Published on *Mechanical Engg Simple Notes*, *Solved problems and Videos* (https://mechdiploma.com)

<u>Home</u> >

Subject Code

- Any - ▼

Chapter Name

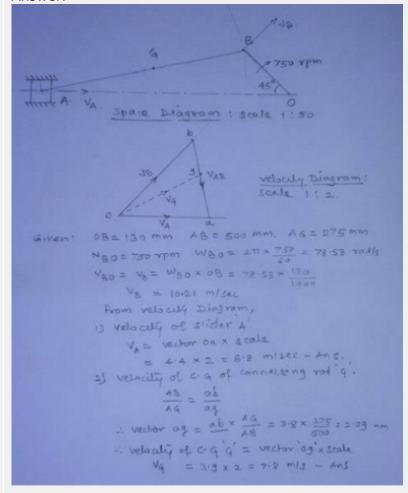
- Any - ▼

Apply

Examination: 2017 SUMMER

Que.No	Marks	
Q 1 d)	2	Question: Define centripetal and tangential acceleration. Answer: Centripetal acceleration: The centripetal acceleration is the rate of change of tangential velocity. When an object is moving with uniform acceleration in circular direction, it is said to be experiencing the centripetal acceleration. Tangential acceleration: Tangential acceleration is a measure of how the tangential velocity of a point at a certain radius changes with time. Tangential acceleration is just like linear acceleration, but it's particular to the tangential direction, which is relevant to circular motion.
Q 1 e)	2	Question: Find the velocity of point B and midpoint C of link AB shown in Figure (1). Answer: Velocity of point B & C: $Vb = AB \times WAB = 0.35 \times 50 = 17.5 \text{ m/s}$ $Vc = AC \times WAB = 0.175 \times 50 = 8.75 \text{ m/s}$

Que.No	Marks	
		Question: Explain with neat sketch how to find the velocity of a slider in slider crank mechanism by Klein's construction. Answer:
Q 2 b)	2	Velocity of a slider in a slider crank mechanism by Klein's construction method
		Let OC be the crank and PC the connecting rod of a reciprocating steam engine, as shown in Fig. below. Let the crank makes an angle θ with the line of stroke PO and rotates with uniform angular velocity ω rad/s in a clockwise direction.
		First of all, draw OM perpendicular to OP; such that it intersects the line PC produced at M. The triangle OCM is known as Klien's velocity diagram.
		In this triangle OCM, OM may be regarded as a line perpendicular to PO,
		CM may be regarded as a line parallel to PC, (since it is the same line) and CO may be regarded as a line parallel to CO.
		op_1 represents v_{PO} (i.e. velocity of P with respect to O or velocity of cross-head or piston P) and is perpendicular to OP , and
		c_1p_1 represents v_{PC} (i.e. velocity of P with respect to C) and is parallel to CP.

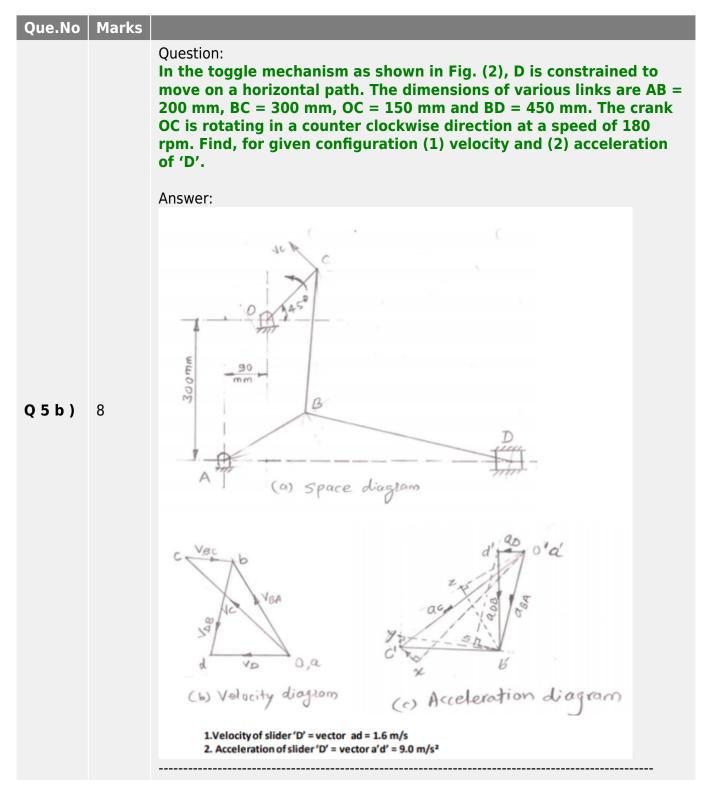

Q3c)

Marks

Question:

In slider crank mechanism, the length of crank OB and connecting rod AB are 130 mm and 500 mm respectively. The centre of gravity G of the connecting rod is 275 mm from slider A. The crank speed is 750 rpm in clockwise. When crank has turned 45 from inner dead centre position determine (i) velocity of slider 'A' (ii) velocity of centre of gravity of connecting rod 'G'.

Answer:


VBC = vector be x scale

togular velocity of Link co;

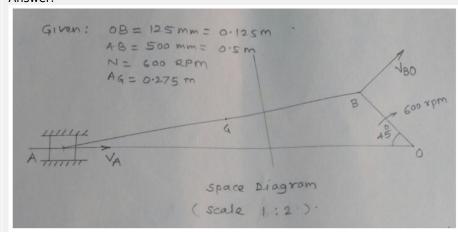
= 4.4 × 0.1 = 0.44 mls WBC = VBC/BC = 0.44/0.07

VCD = Vc = vector ed x scale = 4.6 x0.1 = 0.46 m/s WcD = VCD/CD = 0.46/0.07

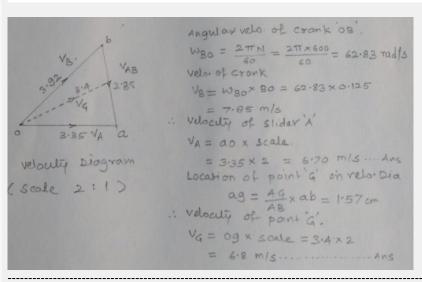
= 6.57 rad/see - ANE

Examination: 2017 WINTER

Que.No	Marks	
Q 2 c)	4	Question: Define linear velocity, angular velocity, absolute velocity and state the relation between linear velocity and angular velocity Answer:
Q 2 d)	4	Question: Explain the Klein's construction to determine velocity and acceleration of single slider crank mechanism Answer: klein's construction


Que.No	Marks	
		Question: In a four bar chain ABCD, AD is fixed and is 150 mm long. The crank AB is 40 mm long and rotates at 120 r.p.m. clockwise, while the link CD = 80 mm oscillates about D. BC and AB are of equal length. Find the angular velocity of link CD when angle BAD = 60 .
		Answer:
		B 40 V _B V _B V _{CB} V _C
Q3a)	4	Space diagram (All dimensions in min).
		Given: $N_{\rm BA} = 120$ r.p.m. or $\omega_{\rm BA} = 2~\pi \times 120/60 = 12.568$ rad/s Since the length of crank $AB = 40~{\rm mm} = 0.04$ m, therefore velocity of B with respect to A or velocity of B , (because A is a fixed point), $v_{\rm BA} = v_{\rm B} = \omega_{\rm BA} \times AB = 12.568 \times 0.04 = 0.503~{\rm m/s}$
		vector $ab = v_{BA} = v_B = 0.503 \text{ m/s}$
		By measurement, we find that
		$v_{\rm CD} = v_{\rm C} = \text{vector } dc = 0.385 \text{ m/s}$
		We know that $CD = 80 \text{ mm} = 0.08 \text{ m}$ ∴ Angular velocity of link CD ,
		$\omega_{\rm CD} = \frac{v_{\rm CD}}{CD} = \frac{0.385}{0.08} = 4.8 \text{ rad/s (clockwise about } D).$

Que.No Marks

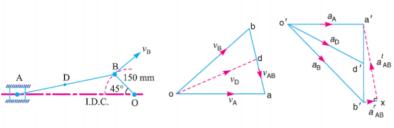

Question:

In a slider crank mechanism, the length of crank OB and connecting rod AB are 125 mm and 500 mm respectively. The centre of gravity G of the connecting rod is 275 mm from the slider. The crank speed is 600 rpm clockwise. When the crank has turned 45 from the inner dead centre position, determine : (i) Velocity of slider 'A', (ii) Velocity of the point 'G' graphically.

Answer:

Q3b) 4

The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 rpm. The crank is 150 mm and the connecting rod is 600 mm long. Determine: (i) linear velocity and acceleration of the mid-point of the connecting rod, and (ii) angular velocity and angular acceleration of the connecting rod, at a crank angle of 45 from inner dead centre position.


Answer:

Given: $N_{BO} = 300 \text{ r.p.m.}$ or $\omega_{BO} = 2 \pi \times 300/60 = 31.42 \text{ rad/s}$; OB = 150 mm = 300 mm0.15 m; BA = 600 mm = 0.6 m

We know that linear velocity of B with respect to O or velocity of B,

$$v_{\text{BO}} = v_{\text{B}} = \omega_{\text{BO}} \times OB = 31.42 \times 0.15 = 4.713 \text{ m/s}$$

...(Perpendicular to BO)

Space diagram.

Velocity diagram.

Acceleration diagram.

In order to find the velocity of the midpoint *D* of the connecting rod *AB*, divide the vector *ba* at *d* in the same ratio as *D* divides *AB*, in the space diagram. In other words, bd/ba = BD/BA

Note: Since *D* is the midpoint of *AB*, therefore *d* is also midpoint of vector *ba*. Join *od*. Now the vector *od* represents the velocity of the midpoint *D* of the connecting rod i.e. V_D .

By measurement, we find that

 V_D = vector od = 4.1 m/s

Acceleration of the midpoint of the connecting rod

We know that the radial component of the acceleration of B with respect to O or the acceleration of B

$$a_{BO}^{r} = a_{B} = \frac{v_{BO}^{2}}{OB} = \frac{(4.713)^{2}}{0.15} = 148.1 \text{ m/s}^{2}$$

and the radial component of the acceleration of A with respect to B,

$$a_{AB}^r = \frac{v_{AB}^2}{BA} = \frac{(3.4)^2}{0.6} = 19.3 \text{ m/s}^2$$

In order to find the acceleration of the midpoint *D* of the connecting rod *AB*, divide the vector *a' b'* at *d'* in the same ratio as *D* divides *AB*. In other words

$$b'd'/b'a' = BD/BA$$

Note: Since D is the midpoint of AB, therefore d' is also midpoint of vector b' a'. Join o' d'. The vector o' d' represents the acceleration of midpoint D of the connecting rod i.e. aD.

By measurement, we find that aD = vector o' d' = 117 m/s2

Angular velocity of the connecting rod

We know that angular velocity of the connecting rod AB,

$$\omega_{AB} = \frac{v_{AB}}{BA} = \frac{3.4}{0.6} = 5.67 \text{ rad/s}^2 \text{ (Anticlockwise about B) Ans.}$$

Angular acceleration of the connecting rod

From the acceleration diagram, we find that

$$a_{AB}^t = 103 \text{ m/s}^2$$
 ...(By measurement)

We know that angular acceleration of the connecting rod AB,

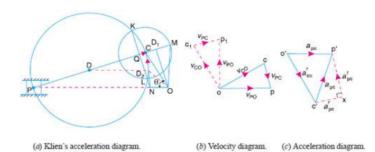
$$\alpha_{AB} = \frac{a'_{AB}}{BA} = \frac{103}{0.6} = 171.67 \text{ rad/s}^2 \text{ (Clockwise about } B\text{) Ans.}$$

Given: Lift = 40 mm Rise = $\frac{1}{4}$ x 360 = 900 Fall = $\frac{1}{6}$ x 360 = 600 Dwell = $\frac{1}{10}$ x 360 = 360

Q5a)

Examination: 2016 SUMMER

Que.No	Marks	
Q a)(ii)	4	Question: Explain single cylinder 4-stroke I.C. engine using turning moment diagram. Answer: A turning moment diagram for a four stroke cycle internal combustion engine, we know that in a four stroke cycle internal combustion engine, there is one working stroke after a crank has turned through two revolution i.e.7200. Since the pressure inside the engine cylinder is less than the atmospheric pressure during suction stroke therefore a negative loop is formed. During the compression stroke, the work is done on gases, therefore a higher negative loop is obtained. During the expansion or working stroke, the fuel burns and the gases expand, therefore a positive loop is obtained. In this stroke the work done is by the gases. During exhaust stroke, the work is done on the gases, therefore negative loop is formed. It may be noted that effect of inertia forces on the piston is taken is account.
Q 2 c)	4	Question: Define linear velocity, angular velocity, absolute velocity and state the relation between linear velocity and angular velocity. Answer: Linear Velocity: It may be defined as the rate of change of linear displacement of a body with respect to the time. Since velocity is always expressed in a particular direction, therefore it is a vector quantity. Mathematically, linear velocity, $v = ds/dt$ Angular Velocity: It may be defined as the rate of change of angular displacement with respect to time. It is usually expressed by a Greek letter ω (omega). Mathematically, angular velocity, $\omega = d\theta/dt$ Absolute Velocity: It is defined as the velocity of any point on a kinematic link with respect to fixed point. Relation between v and ω : $V = r$. ω Where $V = Linear$ velocity. $\omega = Linear$ velocity.


Q 2 d)

Ouestion:

Explain the Klein's construction to determine velocity and acceleration of single slider crank mechanism.

Answer:

Let OC be the crank and PC the connecting rod of a reciprocating steam engine, as shown in Fig. Let the crank makes an angle θ with the line of stroke PO and rotates with uniform angular velocity @rad/s in a clockwise direction. The Klien's velocity and acceleration diagrams are drawn as discussed below:

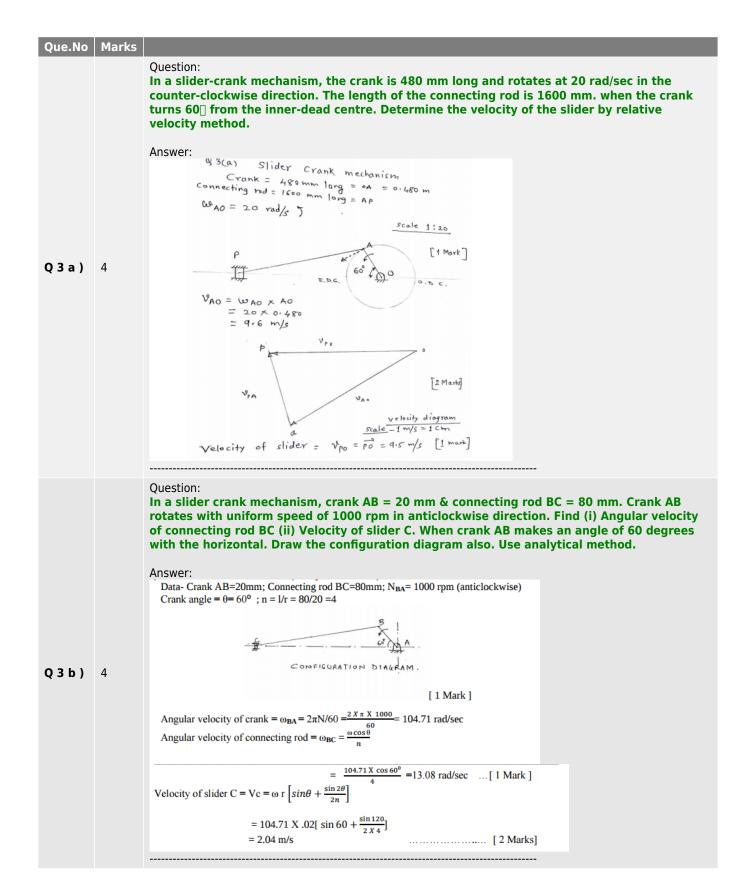
Klien's velocity diagram

First of all, draw OM perpendicular to OP; such that it intersects the line PC produced at M. The triangle OCM is known as Klien's velocity diagram. In this triangle OCM,

OM may be regarded as a line perpendicular to PO,

CM may be regarded as a line parallel to PC, and

...(: It is the same line.)

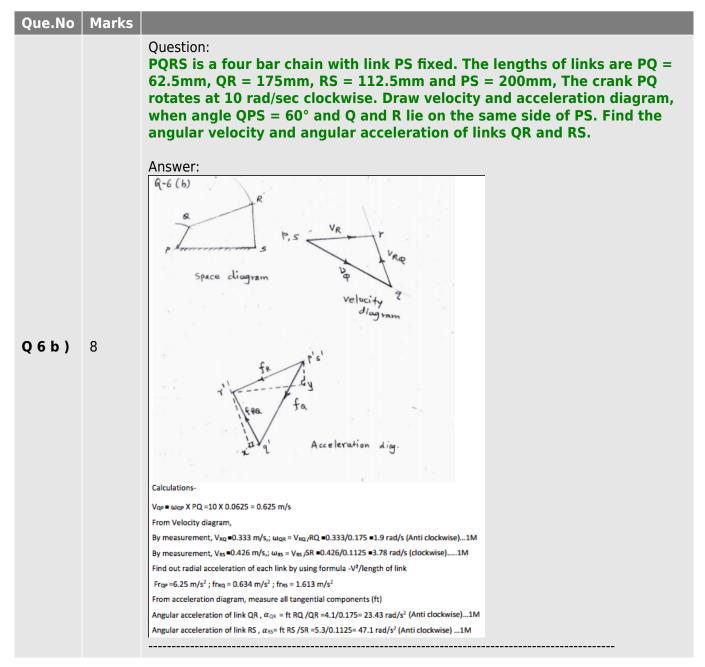

CO may be regarded as a line parallel to CO.

We have already discussed that the velocity diagram for given configuration is a triangle OCP as shown in Fig. If this triangle is rotated through 90°, it will be a triangle oc1 p1, in which oc1 represents VCO (i.e. velocity of C with respect to O or velocity of crank pin C) and is parallel to OC, op1 represents VPO (i.e. velocity of P with respect to O or velocity of cross-head or piston P) and is perpendicular to OP, and c1p1 represents VPC (i.e. velocity of P with respect to C) and is parallel to CP. A little consideration will show that the triangles oc1p1 and OCM are similar. Therefore,

$$\begin{split} \frac{oc_1}{OC} &= \frac{op_1}{OM} = \frac{c_1p_1}{CM} = \omega \text{ (a constant)} \\ \\ \frac{v_{\text{CO}}}{OC} &= \frac{v_{\text{PO}}}{OM} = \frac{v_{\text{PC}}}{CM} = \omega \\ \\ v_{\text{CO}} &= \omega \times OC \text{ ; } v_{\text{PO}} = \omega \times OM \text{, and } v_{\text{PC}} = \omega \times CM \end{split}$$

Thus, we see that by drawing the Klein's velocity diagram, the velocities of various points may be obtained without drawing a separate velocity diagram. Klien's acceleration diagram: The Klien's acceleration diagram is drawn as discussed below: 1. First of all, draw a circle with C as centre and CM as radius. 2. Draw another circle with PC as diameter. Let this circle intersect the previous circle at K and L. 3. Join KL and produce it to intersect PO at N. Let KL intersect PC at Q. This forms the quadrilateral CQNO, which is known as Klien's acceleration diagram. We have already discussed that the acceleration diagram for the given configuration is as shown in Fig. We know that (i) o'c' represents CO ar (i.e. radial component of the acceleration of crank pin C with respect to O) and is parallel to CO; (ii) c'x represents PC ar (i.e. radial component of the acceleration of crosshead or piston P with respect to crank pin C) and is parallel to CP or CQ; (iii) xp' represents PC at (i.e. tangential component of the acceleration of P with respect to C) and is parallel to QN (because QN is perpendicular to CQ); and (iv) o'p' represents aPO (i.e. acceleration of P with respect to O or the acceleration of piston P) and is parallel to PO or NO. A little consideration will show that the quadrilateral o'c'x p' is similar to quadrilateral CQNO . Therefore,

$$\frac{o'c'}{OC} = \frac{c'x}{CQ} = \frac{xp'}{QN} = \frac{o'p'}{NO} = \omega^2 \text{ (a constant)}$$



Examination: 2016 WINTER

Que.No	Marks			
Q 2 c)	4	Answer: Klein's con a) For velo b) For acce	Relevation of different links Relevation of different links	anism. asic diagram with the angle made by crank, crank connecting rod (AP) with dimensions and scale. connecting rod upto the vertical line of the crank mark intersection point M, the triangle created he velocity triangle. connecting rod at X. ircle with radius equal to XA or XB. ircle with Centre as "A" and radius equal to AM. s will intersect each other at two points (K, L), join points. ill intersect the connecting rod at point "C" and line troint "N".
Q 2 d)	4	Answer: Term Linear velocity Angular velocity Absolute velocity Relative	Definition Rate of change of linear displacement per unit time Rate of change of angular displacement per unit time Velocity of any point with respect any point fixed point Velocity of any point with respect to any other some point on the same link.	Mathematical/representation (optional) $V = \frac{d_x}{d_t} \text{m/sec}$ $\omega = \frac{d_\theta}{d_t} \text{rad/sec}$ $V_{ao}; \text{ velocity of point a w.r.t. o}$

Que.No	Marks	
		Question: The crank and connecting rod of steam engine are 0.5m and 2m long respectively. The crank makes 180r.p.m. in clockwise direction. When it has turned through 45° from I.D.C. Find the velocity of piston and angular velocity of connecting rod by relative velocity method. Answer: Relative Velocity Method.
		Given Data:
		Crank = 0.5m Connecting rod=2m
		N= 180 rpm
		Θ =45° A) Space diagram:
		Scale: 1cm= 0.25m
		1cm= 0.25m
		A A
		45,00
		ω= ^{2ΠΝ}
Q3b)	4	60 2IIX180
		ω = 18.84 rad/s
		Calculations:
		$1)V_{OA} = r\omega$
		= 0.5×18.84 $V_{OA} = 9.42 \text{ m/s} \dots 1 \text{ mark}$
		DWolesite discusses
		B)Velocity diagram: Scale:
		1 cm=3m/s
		2) Velocity of piston:
		Vp= L(op) X scale
		=2.8 X3 Vp=8.4 m/sans
		3) Angular velocity of connecting rod:
		$\omega = \frac{Vap}{length of AP} = \frac{l(ap)X Scale}{2} = \frac{2.2X3}{2}$ $\omega = 3.3 \text{ rad/secans}$

Que.No	Marks	
		Question: In a slider crank mechanism the length of crank and connecting rod are 100mm and 40mm respectively. The crank rotates uniformly at 600 rpm clockwise. Then crank has turned through 45° from I.D.C. Find by analytical method. (i) Velocity and acceleration of slider (ii) Angular velocity and angular acceleration of connecting rod.
		Answer:
		Radius of crank , r=100 mm = 0.1m speed. N= 600 rpm , ω = 2 π N/60=62.83 rad/sec
		Length of connecting rod, I=400 mm=0.4m (40 mm is printing mistake)
		Obliquity ratio, n=I/r =400/100= 4, Crank angle θ = 45°
Q 5 a)	8	Velocity of slider Vp= $\omega r(\sin \theta + \frac{\sin 2\theta}{2n})$ =5.225 m/s
		Acceleration of slider fp = $\omega^2 r(\cos \theta + \frac{\cos 2\theta}{n}) = 279.15 \text{ m/s}^2$
		Angular velocity of connecting rod ω_{pc} = (ω cos θ)/n = 11.107 rad/sec
		Angular acceleration of connecting rod α_{pc} = (- $\omega^2 \sin \theta$)/n = -697.89 rad/sec ²
		[Note- If student has taken I=40,(due to printing mistake in QP) which is practically not
		possible, but values of answers in that case will be Vp=12.29 m/s ;fp= 279.15 m/s 2 ; ω_{pc} =111.07
		rad/sec; α_{pc} =6978.86 rad/s² , which may be acceptable.]

Examination: 2015 SUMMER

Que.No	Marks	
Q 2 c)	4	Define linear velocity, angular velocity, absolute velocity and state the relation between linear velocity and angular velocity. Answer: Linear Velocity It may be defined as the rate of change of linear displacement of a body with respect to the time. Since velocity is always expressed in a particular direction, therefore it is a vector quantity. Mathematically, linear velocity, ν = ds/dt Angular Velocity It may be defined as the rate of change of angular displacement with respect to time. It is usually expressed by a Greek letter ω (omega). Mathematically, angular velocity, ω= θd/dt Absolute Velocity It is defined as the velocity of any point on a kinematic link with respect to fixed point. Relation between v and ω: V = r. ω Where V = Linear velocity ω = angular velocity r = radius of rotation
Q 2 d)	4	Question: Describe stepwise procedure for determination of velocity and acceleration by Klein's construction with suitable data. Answer: Steps in Klein's construction: Klein's construction is a simpler construction to get velocity and acceleration diagrams. For example: for reciprocating engine mechanism OPC. draw a circle with PC as diameter as shown. and obtain velocity diagram OCM ie. produce PC to cut perpendicular to line of stroke in 'M'. Draw another circle with 'C' as center and "CM" as radius cutting the first circle in points K and L. Join "KL" which is the chord common to both the circles. Let it cuts PC and OP in "Q" and "N" respectively. Then "OCQN" is the required quadrilateral which is similar to acceleration diagram.

Que.No	Marks	
		Question:
		PQRS is a four bar chain with PS fixed length of links are PQ = 62.
		mm, QR = 175 mm, RS = 112.5 mm, PS = 200 mm. The crank PQ
		rotate at 10 rad/sec. in clockwise direction. Determine the angula
		velocity of point R, graphically by using relative velocity method.
		, and a post of post of the po
		Answer:
		Assume angle QPS = 60°
		$R v_R $
		0
		62.5 V _{RQ}
		And a second sec
		P 200 S
		(a) Space diagram. (b) Velocity diagram.
Q3e)	4	$V_{QP} = PQ \times \omega_{pq} = 0.0625 \times 10 \text{ rad / sec} = 0.625 \text{ m/s}$
		First of all, draw the space diagram to some suitable scale, as shown in Fig. Now the
		velocity diagram, as shown in Fig. is drawn as discussed below:
		1. Since the link PS is fixed, therefore points p and s are taken as one point in the velocity
		diagram. Draw vector Pq perpendicular to QP to some suitable scale, to represent the velocity of Q
		with respect to P or simply velocity of Q (i.e Vqp or Vq) such that vector pq = Vqp = Vq = 0.625 m/s
		2. Now from point q, draw vector or perpendicular to RQ to represent the velocity of R with
		respect to Q(i.e. Vrq) and from point s, draw vector sr perpendicular to RS to represent the velocity
		of Rwith respect to S or simply velocity of R(i.e. Vrs, or Vr). The vectors qr and sr intersect at r
		By measurement, we find that
		$V_{rs} = V_r = vector \text{ sr} = 0.43 \text{ m/s}$
		We know that RS = 112.5 mm = 0.1125 m ∴ Angular velocity of R = Ang. Velo. of link RS (clockwise about S)
		$\omega_{RS} = \frac{Vrs}{RS} = \frac{0.43}{0.1125} = 3.82 \text{ rad/s}$ Ans.

Que.No	Marks	
		Question: In reciprocating engine the crank is 250 mm long and connecting rod is 1000 mm long. The crank rotate at 150 rpm. Find velocity and acceleration of piston and angular velocity and angular acceleration of connecting rod when the crank makes an angle of 30° to IDC. Use analytical method. Answer: Solution of problem on Reciprocating Engine:
		Given: $r = 250 \text{ mm} = 0.25 \text{ m}$, $l = 1000 \text{ mm} = 1 \text{ m}$, $\theta = 30^\circ$; $N = 150 \text{ rpm}$ $\omega = \pi \times 150 / 60 = 7.85 \text{ rad/s}$ 1. Velocity of piston We know that ratio of the length of connecting rod and crank, $n = l/r = 1/0.25 = 4$
		" 17 17 0.23 - 4
Q 5 a)	8	∴ Velocity of the slider, $v_{\rm p} = \omega r \left(\sin \theta + \frac{\sin 2\theta}{2n} \right) = 7.85 \times 0.25 \left(\sin 30 + \frac{\sin 60^{\circ}}{2 \times 4} \right) \text{m/s}$ $= 1.19 \text{ m/s} \text{Ans.}$ and acceleration of the slider, $a_{\rm p} = \omega^2 . r \left(\cos \theta + \frac{\cos 2\theta}{n} \right) = (7.85)^2 \times 0.25 \left(\cos 30^{\circ} + \frac{\cos 60^{\circ}}{4} \right) \text{m/s}^2$
		= 15.27 m/s^2 Ans.
		Angular velocity & Angular acceleration of Con Rod We know that angular velocity of the connecting rod,
		we know that angular velocity of the connecting rod, $\omega_{PC} = \frac{\omega \cos \theta}{n} = \frac{.7.85 \times \cos 30^{\circ}}{4} = 1.67 \text{ rad/s Ans.}$ and angular acceleration of the connecting rod, $\alpha_{PC} = \frac{\omega^{2} \sin \theta}{n} = \frac{(7.85)^{2} \times \sin 30^{\circ}}{4} = 7.7 \text{ rad/s}^{2} \text{ Ans.}$

Examination: 2015 WINTER

Que.No	Marks	
		Question: Define the terms linear velocity, relative velocity, angular velocity and angular acceleration.
		Answer:
Q 2 c)	4	Velocity: It may be defined as the rate of change of linear displacement of a body with respect to the time. Since velocity is always expressed in a particular direction, therefore it is a vector quantity. Mathematically, linear velocity, $v = ds/dt$ Relative velocity: relative velocity is the velocity of an object or an observer B in the rest frame of another object or an observer A. Consider two bodies A and B moving along parallel lines in the same direction with absolute velocities vA and vB such that $vA > vB$, as shown in Fig. 7.1 (a). The relative velocity of A with respect to B , $v_{AB} = \text{Vector difference of } v_{A} \text{ and } v_{B} = \overline{v_{A}} - \overline{v_{B}}$ Angular velocity: It may be defined as the rate of change of angular displacement with respect to time. It is usually expressed by a Greek letter \(\begin{aligned} \text{(omega)}.\) Mathematically, angular velocity, $\omega = d\theta/dt$ Angular acceleration: It may be defined as the rate of change of angular velocity with respect to time. It is usually expressed by a Greek letter $\langle (\text{alpha}). \text{Mathematically}, \text{angular acceleration},$ $\alpha = \frac{d\omega}{dt} = \frac{d}{dt} \left(\frac{d\theta}{dt} \right) = \frac{d^2\theta}{dt^2}$ $\left(\because \omega = \frac{d\theta}{dt} \right)$
Q 2 d)	4	Question: For a single slider crank mechanism , state the formulae to calculate by analytical method - Also state the meaning of each term. Answer: i) Velocity of slider: Vp = w.r [sinθ + sin2θ/2n] where, Vp - velocity of slider w- angular velocity θ - angle of crank to line of stroke 'PO' n- l/r = ratio of length of connecting rod to crank radius. ii) Acceleration of slider: fp = w2 r(cos θ + cos2θ/n) where, fp - acceleration of slider iii) Angular velocity of connecting rod.: wpc = w cos θ / (n2 - sin2θ)1/2 Where, wpc is angular velocity of connecting rod.: αpc = -w2sinθ (n2 -1)/ (n2 -sin2θ) 3/2 Where, αpc is angular acceleration of connecting rod.

Que.No	Marks	
		Question: Space diagram 01 Mark, Velocity Diagram 02 marks , Calculations 01 Mark Note In QP length BC & AB are equal. Read length AD = length BC = 150 mm
		Answer:
		A 150 D
		Space diagram (All dimensions in mm). Velocity diagram.
Q3a)	4	Given: $N_{\rm BA}=120$ r.p.m. or $\omega_{\rm BA}=2~\pi\times120/60=12.568$ rad/s Since the length of crank $A~B=40$ mm = 0.04 m, therefore velocity of B with respect to A or velocity of B , (because A is a fixed point), $v_{\rm BA}=v_{\rm B}=\omega_{\rm BA}\times A~B=12.568\times0.04=0.503~{\rm m/s}$ vector $ab=v_{\rm BA}=v_{\rm B}=0.503~{\rm m/s}$
		By measurement, we find that
		$v_{\rm CD} = v_{\rm C} = \text{vector } dc = 0.385 \text{ m/s}$
		We know that $CD = 80 \text{ mm} = 0.08 \text{ m}$ \therefore Angular velocity of link CD ,
		$\omega_{\rm CD} = \frac{v_{\rm CD}}{CD} = \frac{0.385}{0.08} = 4.8 \text{ rad/s (clockwise about } D)$.
Q3b)	4	Question: In a single slider crank mechanism, crank AB = 20 mm and connecting rod BC = 80 mm. Crank AB rotates with uniform speed of 1000 rpm in anticlockwise direction. Find (i) angular velocity of connecting rod BC and (ii) Velocity of slider C when crank AB makes angle of 60° with the horizontal. Answer: Given: Crank AB = $20 \text{ mm} = 0.02 \text{ m}$, C. R. BC = $80 \text{ mm} = 0.08 \text{ m}$ N = 1000 rpm , ω BA = 2π N/ $60 = 2\pi$ x $1000/60 = 104.7 \text{ rad/sec}$ VBA = ω BA x AB = $104.7 \text{ x } 0.02 = 2.09 \text{ m/s}$ From velocty diagram: Velocity of C w.r.t. B - VCB = vector cb = 1.15 m/s Angular velocity of Connecting rod 'BC' ω CB = VCB / CB = $1.15/0.08 = 14.375 \text{ rad}$ /sec Velocity of slider 'C' VC= vector ac = 2 m/sec

Que.No	Marks	
		Question: The crank and connecting rod of a reciprocating engine are 200 mm and 700 mm respectively. The crank is rotating in clockwise direction at 120 rad/s. Draw Klein's construction and find (i) Velocity and acceleration of the piston (ii) Angular velocity and angular acceleration of the connecting rod at the instant when the crank is at 30° to IDC (inner dead centre). Answer: Construction:
		D Q C D ₁ M D ₂ N) L 30°
		1. Velocity and acceleration of the piston
Q 5 a)	4	We know that the velocity of the piston P_r $v_p = \omega \times OM = 120 \times 0.127 = 15.24 \text{ m/s}$ Ans.
		and acceleration of the piston P , $a_p = \omega^2 \times NO = (120)^2 \times 0.2 = 2880 \text{ m/s}^2 \text{ Ans.}$
		3. Angular velocity and angular acceleration of the connecting rod
		We know that the velocity of the connecting rod PC (i.e. velocity of P with respect to C), $v_{\rm PC} = \omega \times CM = 120 \times 0.173 = 20.76 \text{ m/s}$
		Ppc — W ~ CM = 120 ~ 0.173 — 20.70 IBS
		∴ Angular acceleration of the connecting rod PC,
		$\omega_{PC} = \frac{v_{PC}}{PC} = \frac{20.76}{0.7} = 29.66 \text{ rad/s} \text{ Ans.}$
		We know that the tangential component of the acceleration of P with respect to C , $a_{DC}^{t} = \omega^{2} \times QN = (120)^{2} \times 0.093 = 1339.2 \text{ m/s}^{2}$
		$a_{\text{PC}} = \omega^* \times QN = (120)^* \times 0.093 = 1339.2 \text{ m/s}^*$ ∴ Angular acceleration of the connecting rod PC ,
		$\alpha_{PC} = \frac{a_{PC}^t}{PC} = \frac{1339.2}{0.7} = 1913.14 \text{ rad/s}^2 \text{ Ans.}$
