Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home > A shaft has number of collars integral with it. \qquad

A shaft has number of collars integral with it. \qquad

Question:

A shaft has number of collars integral with it. The external diameter of the collars is $\mathbf{4 0 0} \mathbf{~ m m}$ and the shaft diameter is 250 mm . If the uniform intensity of pressure is $\mathbf{0 . 3 5}$
$\mathrm{N} / \mathrm{mm} 2$ and its co-efficient of friction is 0.05 ; find (i) power absorbed in overcoming friction when shaft rotates at 105 rpm and carries a load of 150 kN , and (ii) number of collars required.

Answer:

Given : $d_{1}=400 \mathrm{~mm}$ or $r_{1}=200 \mathrm{~mm} ; d_{2}=250 \mathrm{~mm}$ or $r_{2}=125 \mathrm{~mm}: p=0.35$
$\mathrm{N} / \mathrm{mm}^{2} ; \mu=0.05 ; N=105$ r.p. m or $\omega=2 \pi \times 105 / 60=11 \mathrm{rad} / \mathrm{s} ; W=150 \mathrm{kN}=150 \times 10^{3} \mathrm{~N}$

1. Power absorbed

We know that for uniform pressure, total frictional torque transmitted,

$$
\begin{aligned}
T & =\frac{2}{3} \times \mu . W\left[\frac{\left(r_{1}\right)^{3}-\left(r_{2}\right)^{3}}{\left(r_{1}\right)^{2}-\left(r_{2}\right)^{2}}\right]=\frac{2}{3} \times 0.05 \times 150 \times 10^{3}\left[\frac{(200)^{3}-(125)^{3}}{(200)^{2}-(125)^{2}}\right] \mathrm{N}-\mathrm{mm} \\
& =5000 \times 248=1240 \times 10^{3} \mathrm{~N}-\mathrm{mm}=1240 \mathrm{~N}-\mathrm{m}
\end{aligned}
$$

\therefore Power absorbed,

$$
P=T . \omega=1240 \times 11=13640 \mathrm{~W}=13.64 \mathrm{~kW} \text { Ans. }
$$

2. Number of collars required

Let $\quad n=$ Number of collars required.
We know that the intensity of uniform pressure (p).

$$
0.35=\frac{W}{n \cdot \pi\left[\left(r_{1}\right)^{2}-\left(r_{2}\right)^{2}\right]}=\frac{150 \times 10^{3}}{n . \pi\left[(200)^{2}-(125)^{2}\right]}=\frac{1.96}{n}
$$

$\therefore \quad n=1.96 / 0.35=5.6$ say 6 Ans.

