Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home $>$ The central distance two shaft is 4 m having two pulleys \qquad

The central distance two shaft is 4 m having two pulleys

Question:

The central distance two shaft is $\mathbf{4 m}$ having two pulleys with diameter having 500 mm and 700 mm respectively find the length of belt required -

(1) for open belt drive

(2) for cross belt drive

Answer:

Central distance between two shafts; C $=4$ Meters; $=4000 \mathrm{~mm}$.
Smaller pulley diameter $=\mathrm{d}=500 \mathrm{~mm}$; Smaller pulley radius $=\mathrm{r}=250 \mathrm{~mm}$;
Larger pulley diameter $=\mathrm{d}=700 \mathrm{~mm}$; lager pulley radius $=\mathrm{r}=350 \mathrm{~mm}$;
Angle subtended by each tangent β
a) Length of open belt drive

Angle subtended by each tangent $\beta=\sin ^{-1}(\mathrm{R}-\mathrm{r} / \mathrm{C})=\sin ^{-1}((350-250) / 4000)$

$$
\begin{gathered}
\mathrm{B}=0.025 \text { radians } \\
\mathrm{L}_{\mathrm{O}}=\pi(\mathrm{R}+\mathrm{r}) 2 \times \beta(\mathrm{R}-\mathrm{r})+2 \mathrm{C} \times \cos \beta=9.889 \mathrm{~m} \mathbf{L}_{\mathrm{O}}=\mathbf{9 . 8 8 9} \mathbf{~ m}
\end{gathered}
$$

b) Length of cross belt drive

Angle subtended by each tangent $\beta=\sin ^{-1}(\mathrm{R}+\mathrm{r} / \mathrm{C})=\sin ^{-1}((350+250) / 4000)$

$$
\beta=0.01575 \text { radians }
$$

$$
\mathrm{L}_{\mathrm{C}}=\pi(\mathrm{R}+\mathrm{r}) 2 \mathrm{x} \beta(\mathrm{R}-\mathrm{r})+2 \mathrm{C} \times \cos \beta=9.903 \mathrm{~m}
$$

\qquad

