Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home > Three masses $10 \mathrm{~kg}, 20 \mathrm{~kg}$ and 15 kg are attached at a point at radii of 20 cm

Three masses $10 \mathrm{~kg}, 20 \mathrm{~kg}$ and 15 kg are attached at a point at radii of $20 \mathrm{~cm}$.

Question:

Three masses $10 \mathrm{~kg}, 20 \mathrm{~kg}$ and 15 kg are attached at a point at radii of $20 \mathrm{~cm}, 25 \mathrm{~cm}$ and 15 cm respectively. If the angle between successive masses is 60° and 90°. Determine analytically the balancing mass to be attached at radius of $\mathbf{3 0} \mathbf{~ c m}$.

Answer:

$$
\begin{aligned}
& \text { Given }: m_{1}=10 \mathrm{~kg} ; m_{2}=20 \mathrm{~kg} ; m_{3}=15 \mathrm{~kg} ; \\
& r_{1}=0.2 \mathrm{~m} ; \quad r_{2}=0.25 \mathrm{~m} ; r_{3}=0.15 \mathrm{~m} ; \quad r=0.30 \mathrm{~m} \\
& \theta_{1}=0^{\circ} ; \theta_{2}=60^{\circ} ; \theta_{3}=150^{\circ}
\end{aligned}
$$

Let $\quad m=$ Balancing mass, and
$\theta=$ The angle which the balancing mass makes
Since the magnitude of centrifugal forces are proportional to the product of each mass and its radius,
therefore

$$
\begin{aligned}
& m_{1} \cdot r_{1}=10 \times 0.2=2 \mathrm{~kg}-\mathrm{m} \\
& m_{2} \cdot r_{2}=20 \times 0.25=5 \mathrm{~kg}-\mathrm{m} \\
& m_{3} \cdot r_{3}=15 \times 0.15=2.25 \mathrm{~kg}-\mathrm{m}
\end{aligned}
$$

Resolving $m_{1} \cdot r_{1}, m_{2} \cdot r_{2}, m_{3} \cdot r_{3}$ and $m_{4} \cdot r_{4}$ horizontally,

$$
\begin{aligned}
\Sigma H & =m_{1} \cdot r_{1} \cos \theta_{1}+m_{2} \cdot r_{2} \cos \theta_{2}+m_{3} \cdot r_{3} \cos \theta_{3} \\
& =2 \cos 0^{\circ}+5 \cos 60^{\circ}+2.25 \cos 150^{\circ} \\
& =2.55 \mathrm{~kg}-\mathrm{m}
\end{aligned}
$$

Now resolving vertically,

$$
\begin{aligned}
\Sigma V & =m_{1} \cdot r_{1} \sin \theta_{1}+m_{2} \cdot r_{2} \sin \theta_{2}+m_{3} \cdot r_{3} \sin \theta_{3} \\
& =2 \sin 0^{\circ}+5 \sin 60^{\circ}+2.25 \sin 150^{\circ} \\
& =5.455 \mathrm{~kg}-\mathrm{m}
\end{aligned}
$$

\therefore Resultant, $R=\sqrt{(\Sigma H)^{2}+(\Sigma V)^{2}}=6.02 \mathrm{~kg}-\mathrm{m}$
We know that

$$
\begin{aligned}
m \cdot r & =R=6.02 \quad \mathrm{~m}=6.02 / 0.30=20.067 \mathrm{~kg} \\
\text { and } \tan \theta^{\prime} & =\Sigma V / \Sigma H=\quad \theta^{\prime}=64.94^{\circ}
\end{aligned}
$$

