Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home > Four masses attached to a shaft and their respective radii of rotation are given as : m $1=180 \mathrm{~kg} \mathrm{~m} 2=300 \mathrm{~kg} \mathrm{~m} 3=230 \mathrm{~kg} \mathrm{~m} 4$ $=260 \mathrm{~kg} \mathrm{r} 1=0.2 \mathrm{mr} 2=0.15 \mathrm{~m} \mathrm{r} 3=0.25 \mathrm{mr} 4=0.3 \mathrm{~m}$ The angles between successive masses are $45 \square, 75 \square$ and 135]. Find th

Four masses attached to a shaft and their respective radii of rotation are given as : m $1=180 \mathrm{~kg} \mathrm{~m} 2=300 \mathrm{~kg} \mathrm{~m} 3=230$ $\mathrm{kg} \mathrm{m} 4=260 \mathrm{kgr} 1=0.2 \mathrm{mr} 2=0.15 \mathrm{mr} 3=0.25 \mathrm{~m} \mathrm{r} 4=$ 0.3 m The angles between successive masses are 45], 75] and 135]. Find th

Question:

Four masses attached to a shaft and their respective radii of rotation are given as :
$\mathrm{m} 1=180 \mathrm{~kg} \mathrm{~m} 2=300 \mathrm{~kg} \mathrm{~m} 3=230 \mathrm{~kg} \mathrm{~m} 4=260 \mathrm{~kg}$ $\mathrm{r} 1=0.2 \mathrm{~m} \mathrm{r} 2=0.15 \mathrm{~m} \mathrm{r} 3=0.25 \mathrm{~m} \mathrm{r} 4=0.3 \mathrm{~m}$
The angles between successive masses are 45], 75] and 135].
Find the
position and magnitude of the balance mass required, it its radius of rotation is
0.2 m . The masses revolve in same plane.

Answer:

Given : m1 $=180 \mathrm{~kg}, \mathrm{~m} 2=300 \mathrm{~kg}, \mathrm{~m} 3=230 \mathrm{~kg}, \mathrm{~m} 4=260 \mathrm{~kg} \mathrm{r} 1$ $=0.2 \mathrm{~m}, \mathrm{r} 2=0.15 \mathrm{~m}, \mathrm{r} 3=0.25 \mathrm{~m}, \mathrm{r} 4=0.3 \mathrm{~m}$ Ө1 $=45, ~ Ө 2=75$, $\theta=135$ The centrifugal forces are given by $-\mathrm{m} 1 \mathrm{r} 1=36, \mathrm{~m} 2 \mathrm{r} 2=$ $45, \mathrm{~m} 3 \mathrm{r} 3=57.5, \mathrm{~m} 4 \mathrm{r} 4=78$

From vector diagram the resultant force is at 60 to the mass m 1 and is represented by ar ar $=12 \mathrm{~kg} \mathrm{~m}$ Therefore $\mathrm{mb} * \mathrm{rb}=12$ kgm Balancing mass $\mathrm{mb}=12 / 0.2=60 \mathrm{~kg}$ at an angle of 2400 with the direction of m 1 mass

