Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home > Two pulley, one 450 mm diameter and the other 200 mm diameter are on parallel shafts 1.95 m apart and are connected by a crossed belt. Find the length of the belt required and the angle of contact between the belt and each pulley. What power can be transm

Two pulley, one 450 mm diameter and the other 200 mm diameter are on parallel shafts 1.95 m apart and are connected by a crossed belt. Find the length of the belt required and the angle of contact between the belt and each pulley. What power can be transm

Question:

Two pulley, one 450 mm diameter and the other 200 mm diameter are on
parallel shafts 1.95 m apart and are connected by a crossed belt. Find the
length of the belt required and the angle of contact between the belt and each
pulley.
What power can be transmitted by the belt when the larger pulley rotates at
200 rpm , if the maximum permissible tension in the belt is 1 kN and the
co-efficient of friction between the belt and pulley is 0.25 ?

Answer:

Solution. Given : $d_{1}=450 \mathrm{~mm}=0.45 \mathrm{~m}$ or $r_{1}=0.225 \mathrm{~m} ; d_{2}=200 \mathrm{~mm}=0.2 \mathrm{~m}$ or $r_{2}=0.1 \mathrm{~m} ; x=1.95 \mathrm{~m} ; N_{1}=200 \mathrm{rpm} ; T_{1}=1 \mathrm{kN}=1000 \mathrm{~N} ; \mu=0.25$

We know that speed of the belt||

$$
v=\frac{\pi d_{1} \cdot N_{1}}{60}=\frac{\pi \times 0.45 \times 200}{60}=4.714 \mathrm{~m} / \mathrm{s}
$$

Length of the belt
We know that length of the crossed belt,

$$
\begin{aligned}
L & =\pi\left(r_{1}+r_{2}\right)+2 x+\frac{\left(r_{1}+r_{2}\right)^{2}}{x} \\
& =\pi(0.225+0.1)+2 \times 1.95+\frac{(0.225+0.1)^{2}}{1.95}=4.975 \mathrm{~m} \text { Ans. }
\end{aligned}
$$

Angle of contact betveen the belt and each pulley
Let
$\theta=$ Angle of contact between the belt and each pulley.
We know that for a crossed belt drive,

$$
\begin{aligned}
\sin \alpha & =\frac{r_{1}+r_{2}}{x}=\frac{0.225+0.1}{1.95}=0.1667 \text { or } \alpha=9.6^{\circ} \\
\therefore \quad \theta & =180^{\circ}+2 \alpha=180^{\circ}+2 \times 9.6^{\circ}=199.2^{\circ} \\
& =199.2 \times \frac{\pi}{180}=3.477 \mathrm{rad} \text { Ans. }
\end{aligned}
$$

Power transmitted

Let

$$
T_{2}=\text { Tension in the slack side of the belt. }
$$

We know that

$$
\begin{aligned}
2.3 \log \left(\frac{T_{1}}{T_{2}}\right) & =\mu \cdot \theta=0.25 \times 3.477=0.8692 \\
\log \left(\frac{T_{1}}{T_{2}}\right) & \left.=\frac{0.8692}{2.3}=0.378 \text { or } \frac{T_{1}}{T_{2}}=2.387 \quad \text {..(Taking antilog of } 0.378\right) \\
\therefore \quad T_{2} & =\frac{T_{1}}{2.387}=\frac{1000}{2.387}=419 \mathrm{~N}
\end{aligned}
$$

We know that power transmitted,

$$
P=\left(T_{1}-T_{2}\right) v=(1000-419) 4.714=2740 \mathrm{~W}=2.74 \mathrm{~kW} \text { Ans. }
$$

