Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home > Position and magnitude of balance mass required

Position and magnitude of balance mass required

Question:

Four masses m1, m2, m3 and m4 are $200 \mathrm{~kg}, 300 \mathrm{~kg}, 240$
kg , and 260 kg respectively. The corresponding radii of rotation are $0.2 \mathrm{~m}, 0.15 \mathrm{~m}, 0.25 \mathrm{~m}$ and 0.3 m respectively and the angles between successive masses are $45^{\circ}, 75^{\circ}$ and 135°. Find the position and magnitude of balance mass required, if its radius of rotation is 0.2 m .

Answer:

Given : $m_{1}=200 \mathrm{~kg} ; m_{2}=300 \mathrm{~kg} ; m_{3}=240 \mathrm{~kg} ; m_{4}=260 \mathrm{~kg} ; r_{1}=0.2 \mathrm{~m}$;
$r_{2}=0.15 \mathrm{~m} ; r_{3}=0.25 \mathrm{~m} ; r_{4}=0.3 \mathrm{~m} ; \theta_{1}=0^{\circ} ; \theta_{2}=45^{\circ} ; \theta_{3}=45^{\circ}+75^{\circ}=120^{\circ} ; \theta_{4}=45^{\circ}+75^{\circ}$
$+135^{\circ}=255^{\circ} ; r=0.2 \mathrm{~m}$
Let $\quad m=$ Balancing mass, and
$\theta=$ The angle which the balancing mass makes with m_{1}.
Since the magnitude of centrifugal forces are proportional to the product of each mass and its radius, therefore

$$
\begin{aligned}
m_{1} \cdot r_{1} & =200 \times 0.2=40 \mathrm{~kg}-\mathrm{m} \\
m_{2} \cdot r_{2} & =300 \times 0.15=45 \mathrm{~kg}-\mathrm{m} \\
m_{3} \cdot r_{3} & =240 \times 0.25=60 \mathrm{~kg}-\mathrm{m} \\
m_{4} \cdot r_{4} & =260 \times 0.3=78 \mathrm{~kg}-\mathrm{m}
\end{aligned}
$$

The problem may, now, be solved either analytically or graphically. But we shall solve the problem by both the
 methods one by one.

Analytical method
The space diagram is shown in Fig.
Resolving $m_{1} \cdot r_{1}, m_{2}, r_{2}, m_{3}, r_{3}$ and m_{4}, r_{4} horizontally,

$$
\begin{aligned}
\Sigma H & =m_{1} \cdot r_{1} \cos \theta_{1}+m_{2} \cdot r_{2} \cos \theta_{2}+m_{3} \cdot r_{3} \cos \theta_{3}+m_{4} \cdot r_{4} \cos \theta_{4} \\
& =40 \cos 0^{\circ}+45 \cos 45^{\circ}+60 \cos 120^{\circ}+78 \cos 255^{\circ} \\
& =40+31.8-30-20.2=21.6 \mathrm{~kg}-\mathrm{m}
\end{aligned}
$$

Now resolving vertically,

$$
\begin{aligned}
\Sigma V & =m_{1} \cdot r_{1} \sin \theta_{1}+m_{2} \cdot r_{2} \sin \theta_{2}+m_{3} \cdot r_{3} \sin \theta_{3}+m_{4} \cdot r_{4} \sin \theta_{4} \\
& =40 \sin 0^{\circ}+45 \sin 45^{\circ}+60 \sin 120^{\circ}+78 \sin 255^{\circ} \\
& =0+31.8+52-75.3=8.5 \mathrm{~kg}-\mathrm{m}
\end{aligned}
$$

\therefore Resultant, $R=\sqrt{(\Sigma H)^{2}+(\Sigma V)^{2}}=\sqrt{(21.6)^{2}+(8.5)^{2}}=23.2 \mathrm{~kg}-\mathrm{m}$
We know that $m \cdot r=R=23.2$ or
Balancing mass $\quad m=23.2 / r=23.2 / 0.2=116 \mathrm{~kg}$ Ans.
and $\quad \tan \theta^{\prime}=\Sigma V / \Sigma H=8.5 / 21.6=0.3935$ or $\theta^{\prime}=21.48^{\circ}$
Since θ^{\prime} is the angle of the resultant R from the horizontal mass of 200 kg , therefore the angle of the balancing mass from the horizontal mass of 200 kg ,

$$
\theta=180^{\circ}+21.48^{\circ}=201.48^{\circ} \mathrm{Ans} .
$$

