Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home > Problem:Two parallel shafts whose centre line are 4.8 m apart, are connected by open belt drive.

Problem:Two parallel shafts whose centre line are 4.8 m apart, are connected by open belt drive.

Question:

Two parallel shafts whose centre line are 4.8 m apart, are connected by open belt drive. The diameter of larger pulley is 1.5 m and that of smaller pulley 1 m . The initial tension in the belt when stationary is 3 kN . The mass of the belt is $1.5 \mathrm{~kg} / \mathrm{m}$ length. The coefficient of friction between the belt and pulley is 0.3 Taking centrifugal tension into account, calculate the power transmitted when the smaller pulley rotates at 400 rpm .

Answer:

We know that velocity of the belt,
and centrifugal tension,

$$
v=\frac{\pi d_{2} \cdot N_{2}}{60}=\frac{\pi \times 1 \times 400}{60}=21 \mathrm{~m} / \mathrm{s}
$$

Let $\quad T_{1}=$ Tension in the tight side, and
$T_{2}=$ Tensic
We know that initial tension $\left(T_{0}\right)$.

$$
\begin{align*}
& 3000=\frac{T_{1}+T_{2}+2 T_{\mathrm{C}}}{2}=\frac{T_{1}+T_{2}+2 \times 661.5}{2} \\
& \therefore \quad T_{1}+T_{2}=3000 \times 2-2 \times 661.5=4677 \mathrm{~N} \tag{i}
\end{align*}
$$

For an open belt drive,

$$
\sin \alpha=\frac{\eta-\eta_{2}}{x}=\frac{d_{1}-d_{2}}{2 x}=\frac{1.5-1}{2 \times 4.8}=0.0521 \text { or } \alpha=3^{\circ}
$$

\therefore Angle of lap on the smaller pulley,

$$
\begin{aligned}
\theta & =180^{\circ}-2 \alpha=180^{\circ}-2 \times 3^{\circ}=174^{\circ} \\
& =174^{\circ} \times \pi / 180=3.04 \mathrm{rad}
\end{aligned}
$$

We know that

$$
\begin{align*}
& 2.3 \log \left(\frac{T_{1}}{T_{2}}\right)=\mu . \theta=0.3 \times 3.04=0.912 \\
& \quad \log \left(\frac{T_{1}}{T_{2}}\right)=\frac{0.912}{2.3}=0.3965 \text { or } \frac{T_{1}}{T_{2}}=2.5 \tag{ii}
\end{align*}
$$

_-(Taking antilog of 0.3965)
From equations (i) and (ii),

$$
T_{1}=3341 \mathrm{~N} ; \text { and } T_{2}=1336 \mathrm{~N}
$$

$\therefore \quad$ Power transmitted,

$$
P=\left(T_{1}-T_{2}\right) v=(3341-1336) 21=42100 \mathrm{~W}=42.1 \mathrm{~kW} . \mathrm{Ans}
$$

