Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home > In slider crank mechanism, the length of crank OB and \qquad

In slider crank mechanism, the length of crank OB and

Question:

In slider crank mechanism, the length of crank $O B$ and connecting rod $A B$ are 130 mm and 500 mm respectively. The centre of gravity G of the connecting rod is 275 mm from slider A. The crank speed is 750 rpm in clockwise. When crank has turned $45 \square$ from inner dead centre position determine (i) velocity of slider ' A ' (ii) velocity of centre of gravity of connecting rod ' G '.

Answer:

velocity Diagram: scale $1: 2$.

Given:

$$
\begin{gathered}
D B=130 \mathrm{~mm} \quad A B=500 \mathrm{~mm} . \quad A G=275 \mathrm{~mm} \\
V_{B O}=750 \mathrm{rpm} \quad W_{B O}=2 \pi \times \frac{750}{60}=78.53 \mathrm{mod} / \mathrm{s} \\
V_{B O}=V_{B}=W_{B O} \times 0 B=72.53 \times 130 \\
V_{B}=10.21 \mathrm{~m} / \mathrm{sec}
\end{gathered}
$$

from velocity Diagram,
i) valocaly of slider A^{\prime}

$$
V_{A}=\text { vector oo } \times \& \text { call }
$$

$$
=44 \times 2=8.8 \mathrm{~m} / \mathrm{sec}-4 \mathrm{~ns} \text {. }
$$

2) velocity of $c \cdot G$ of connecting rod a '.

$$
\begin{aligned}
\frac{A B}{A G} & =\frac{a b}{a g} \\
\therefore \text { vector } a g & =\frac{a b}{} \times \frac{A G}{A 8}=3.8 \times \frac{175}{550}=2.09 \mathrm{~mm} \\
\therefore \text { veloaly of } c . g^{\prime} G^{\prime} & =\text { vector } 09^{\prime} \times \text { scale } \\
v_{G} & =3.9 \times 2=7.2 \mathrm{~m} / \mathrm{s}-\text { Ans }
\end{aligned}
$$

