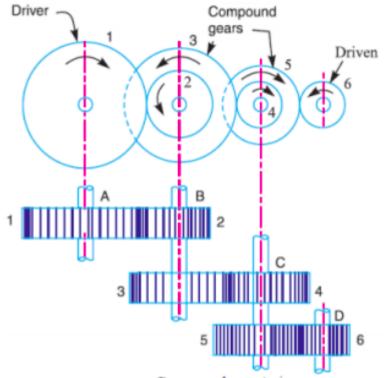
Published on *Mechanical Engg Simple Notes*, Solved problems and Videos (<u>https://mechdiploma.com</u>)

<u>Home</u> > Explain the compound gear train with neat sketch and write down the velocity ratio's equation.

Explain the compound gear train with neat sketch and write down the velocity ratio's equation.


Question:

Explain the compound gear train with neat sketch and write down the velocity ratio's equation.

Answer:

Compound gear train

When there are more than one gear on a shaft, as shown in Fig. below, it is called a compound train of gear.

Compound gear train.

In a compound train of gears, as shown in Fig., the gear 1 is the driving gear mounted on shaft A, gears 2 and 3 are compound gears which are mounted on shaft B. The gears 4 and 5 are also compound gears which are mounted on shaft C and the gear 6 is the driven gear mounted on shaft D.

Let N1= Speed of driving gear 1, T1= Number of teeth on driving gear 1,

N2,N3..., N6= Speed of respective gears in r.p.m., and

T2,T3..., T6= Number of teeth on respective gears.

Since gear 1 is in mesh with gear 2, therefore its speed ratio is

$$\frac{N_1}{N_2} = \frac{T_2}{T_1}$$
 ...(*i*)

Similarly, for gears 3 and 4, speed ratio is

$$\frac{N_3}{N_4} = \frac{T_4}{T_3} \qquad \dots (ii)$$

and for gears 5 and 6, speed ratio is

$$\frac{N_5}{N_6} = \frac{T_6}{T_5}$$
 ...(*iii*)

The speed ratio of compound gear train is obtained by multiplying the equations (*i*), (*ii*) and (*iii*),

$$\therefore \quad \frac{N_1}{N_2} \times \frac{N_3}{N_4} \times \frac{N_5}{N_6} = \frac{T_2}{T_1} \times \frac{T_4}{T_3} \times \frac{T_6}{T_5}$$
$$\frac{N_1}{N_6} = \frac{T_2 \times T_4 \times T_6}{T_1 \times T_3 \times T_5}$$

Since gears 2 and 3 are mounted on one shaft *B*, therefore $N_2 = N_3$. Similarly gears 4 and 5 are mounted on shaft *C*, therefore $N_4 = N_5$.

<i>i.e.</i> Speed ratio =	Speed of the first driver
	Speed of the last driven or follower
_	Product of the number of teeth on the drivens
and Train value =	Product of the number of teeth on the drivers
	Speed of the last driven or follower
	Speed of the first driver
	Product of the number of teeth on the drivers
	Product of the number of teeth on the drivens