Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home > In a slider crank mechanism, crank $\mathrm{AB}=20 \mathrm{~mm}$ \& connecting rod $\mathrm{BC}=80 \mathrm{~mm}$. Crank AB rotates with uniform speed of 1000 rpm in anticlockwise direction.

In a slider crank mechanism, crank $\mathrm{AB}=20 \mathrm{~mm}$ \& connecting rod $B C=80 \mathrm{~mm}$. Crank AB rotates with uniform speed of 1000 rpm in anticlockwise direction.......

Question:

In a slider crank mechanism, crank $\mathrm{AB}=20 \mathrm{~mm}$ \& connecting rod $B C=80 \mathrm{~mm}$. Crank AB rotates with uniform speed of 1000 rpm in anticlockwise direction.

Find (i) Angular velocity of connecting rod BC
(ii) Velocity of slider C . When crank AB makes an angle of 60 degrees with the horizontal.

Draw the configuration diagram also.

Use analytical method.

Answer:

Data- Crank $\mathrm{AB}=20 \mathrm{~mm}$; Connecting rod $\mathrm{BC}=80 \mathrm{~mm} ; \mathrm{N}_{\mathrm{BA}}=1000 \mathrm{rpm}$ (anticlockwise)
Crank angle $=\theta=60^{\circ} ; n=1 / r=80 / 20=4$

[1 Mark]
Angular velocity of crank $=\omega_{\mathrm{BA}}=2 \pi \mathrm{~N} / 60=\frac{2 X \pi \times 1000}{60}=104.71 \mathrm{rad} / \mathrm{sec}$
Angular velocity of connecting rod $=\omega_{\mathrm{BC}}=\frac{\omega \cos \theta}{n}$

$$
=\frac{104.71 \times \cos 60^{\circ}}{4}=13.08 \mathrm{rad} / \mathrm{sec}
$$

Velocity of slider $\mathrm{C}=\mathrm{Vc}=\omega \mathrm{r}\left[\sin \theta+\frac{\sin 2 \theta}{2 n}\right]$

$$
\begin{aligned}
& =104.71 \mathrm{X} .02\left[\sin 60+\frac{\sin 120}{2 \times 4}\right] \\
& =2.04 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

