Published on Mechanical Engg Simple Notes ,Solved problems and Videos (https://mechdiploma.com)

Home >

Subject Code

```
-Any - V
```

Question Type

- Any - \mathbf{V}
marks
- Any - \mathbf{V}

Question Number

- Any - \mathbf{V}

Sub Number

- Any - \mathbf{V}

Apply

Examination: 2017 SUMMER

Examination: 2016 SUMMER

Examination: 2015 SUMMER

Question:
PQRS is a four bar chain with PS fixed length of links are $P Q=$ $62.5 \mathrm{~mm}, \mathrm{QR}=175 \mathrm{~mm}, \mathrm{RS}=112.5 \mathrm{~mm}, \mathrm{PS}=200 \mathrm{~mm}$. The crank PQ rotate at $10 \mathrm{rad} / \mathrm{sec}$. in clockwise direction. Determine the angular velocity of point R, graphically by using relative velocity method.

Answer:

Assume angle $\mathrm{QPS}=60^{\circ}$

(a) Space diagram.

(b) Velocity diagram.

Q 3 e)

$$
\mathrm{V}_{\mathrm{QP}}=\mathrm{PQ} \times \omega_{\mathrm{Pq}}=0.0625 \times 10 \mathrm{rad} / \mathrm{sec}=0.625 \mathrm{~m} / \mathrm{s}
$$

First of all, draw the space diagram to some suitable scale, as shown in Fig. Now the velocity diagram, as shown in Fig. is drawn as discussed below :

1. Since the link PS is fixed, therefore points \mathbf{p} and s are taken as one point in the velocity diagram. Draw vector Pq perpendicular to QP to some suitable scale, to represent the velocity of Q with respect to P or simply velocity of $\mathrm{Q}\left(i . e \mathrm{~V}_{\mathrm{Q}}\right.$ or $\left.\mathrm{V}_{\mathbf{q}}\right)$ such that

$$
\text { vector } \mathrm{pq}=\mathrm{V}_{\mathrm{qP}}=\mathrm{V}_{\mathbf{q}}=0.625 \mathrm{~m} / \mathrm{s}
$$

2. Now from point \mathbf{Q}, draw vector $\dot{q} r$ perpendicular to $R Q$ to represent the velocity of R with respect to $Q\left(i . e . V_{\text {rq }}\right)$ and from point s, draw vector ${ }^{s T}$ perpendicular to $R S$ to represent the velocity of \mathbf{R} with respect to S or simply velocity of $\mathbf{R}\left(\right.$ i.e. $V_{r s}$, or $\left.V_{\mathbf{r}}\right)$. The vectors \mathbf{q} and $s r$ intersect at \mathbf{r}

By measurement, we find that

$$
\mathrm{V}_{\mathrm{rS}}=\mathrm{V}_{\mathrm{r}}=\text { vector } \mathrm{sr}=0.43 \mathrm{~m} / \mathrm{s}
$$

We know that \quad RS $=112.5 \mathrm{~mm}=0.1125 \mathrm{~m}$
\therefore Angular velocity of $\mathrm{R}=$ Ang. Velo. of link RS (clockwise about S)

$$
\omega_{R S}=\frac{V_{\text {rs }}}{R S}=\frac{0.43}{0.1125}=3.82 \mathrm{rad} / \mathrm{s}
$$

