Published on *Mechanical Engg Simple Notes*, *Solved problems and Videos* (<u>https://mechdiploma.com</u>)

<u>Home</u> >

Subject Code

- Any - 🔻

Chapter Name

- Any - 🔻

Apply

Examination: 2017 SUMMER

Que.No	Marks	
		Question: (i) State and explain two most important reasons for adopting involute curves for a gear tooth profile Answer:
Q 2b)(l)	8	For power transmission gears, the tooth form most commonly used the involute profile as a)Involute gears can be manufactured easily: Since the rack in an involute system has straight sides and since the generating cutters usually have rack profile, these cutters can be easily manufactured. Involute gears can be produced more accurately and at a lesser cost. b) The gearing has a feature that enables smooth meshing despite the misalignment of center
Q 5a)(i)	8	Question: (i) Show that the efficiency of a self locking screw is less than 50% Answer: (i) efficiency of screw $\eta = \tan \alpha / \tan(\alpha + \varphi)$ And for self locking screws, $\varphi \ge \alpha$ or $\alpha \le \varphi$ Efficiency $\le \tan(\varphi) / \tan(\varphi + \varphi) \le \tan \varphi / \tan 2 \varphi \le \tan \varphi / (2 \tan \varphi) / (1 \tan 2 \varphi)) \le \tan \varphi X (1 \tan 2 \varphi) / (2 \tan \varphi) \le \frac{1}{2} \tan 2 \varphi / 2$ From this expression efficiency of self locking screw is less than 50%

Que.No	Marks	
Q 5a)(ii)	8	Question: What is self locking property of threads and where it is necessary? Answer: self locking property of the threads-if $\varphi > \alpha$ the torque required to lower the load will be positive, indicating that an effort is applied to lower the load. if friction angle is greater than the helix angle or coefficient of friction is greater than the tangent of helix angle applications- for very large use of screw in threaded fastener, screws in screw top container lids, vices, C-clamps and screw jacks
Q 5b)(ii)	8	Question: Explain the terms self locking and overhauling of screw. Answer: self locking property - torque required to lower the load, $T = Wtan(\varphi - \alpha)xd/2$ self locking property of the threads-if $\varphi > \alpha$ the torque required to lower the the load will be positive, indicating that an effort is applied to lower the load. if friction angle is greater than the helix angle or coefficient of friction is greater than the tangent of helix angle(2marks) Over hauling of screwsin the above expression, if $\varphi < \alpha$, then the torque required to lower the load will be negative. The load will start moving downward without the application of any torque, such a condition is known as over hauling of screws.
Q 6 a)	4	Question: Draw profiles to square and Acme threads with full details. Which one is stronger? Answer: hread is stronger. $\downarrow \downarrow $

Examination: 2017 WINTER

Que.No	Marks	
Q 1 g)	2	Question: Define following terms of spring: Answer: (i) Spring rate: The spring rate is defined as the load required per unit deflection of the spring. It is also known as spring stiffness or spring constant. Mathematically, Spring rate, $k = W / \delta$ Where, W = Load $\delta = Deflection of the spring$ (ii) Spring index: The spring index is defined as the ratio of the mean diameter of the coil to the diameter of the wire. Mathematically, Spring index, $C = D / d$ Where, D = Mean diameter of the coil d = Diameter of the wire
Q1i)	2	Question: Draw the different thread profiles used for power screws. Answer: $P = P = 60^{\circ}$ $P = 10^{\circ}$ $P = 10^$

Que.No	Marks	
		Question:
		Design of screw jack
		Answer:
Q4c)	8	Answer: $ \frac{W}{\sigma c} = \frac{W}{\frac{\pi}{4} X (dc)^{2}} $ As screw is subjected to twisting moment, higher value of screw is selected. Select The dimension of d _c w.r.t pitch Mean diameter d= do- p/2 2) Torque required lifting the load
		T1= W. tan $(\alpha + \phi)^{\frac{d}{2}}$
		As collar friction is Neglecting, $T_2=0$
		Total Torque required to lift the load = T_1 For Checking:
		Direct compressive stress in screw:
		$\sigma c = \frac{W}{\frac{\pi}{4} X (dc)^2},$
		Torsional shear stress τ , $\tau = \frac{16 T 1}{\pi \chi (dc)^3}$
		According to Maximum shear stress theory, the maximum shear stress in the screw $\tau_{max} = 1/2\sqrt{\sigma c^2 + 4\tau^2}$
		Permissible shear stress for a screw $\tau = \sigma c/2$
		<u> <u> <u> </u> <u> <u> </u> <u></u></u></u></u>
		The bearing pressure between the thread
		$Pb = \frac{W}{\frac{\pi}{4}X (do^2 - dc^2) n}$, Height of Nut: H= n X P
		Check: Shear stress induced in the screw thread
		$\tau = \frac{W}{\pi X (dc) X t n} \text{ as } t = p/2$
		$ au_{\text{calculated}\leq} au_{\text{allowable}}$. So screw is safe .

Q	ue.No	Marks	
			Question: Power Screw: Given Data
			Answer:
			Do= 100 mm , W =300 KN = 300 X 10^3 N, P=12 mm , μ = μ 1= 0.15 Since,Screw is double start, Lead of screw = 2 p =2 x12 =24 mm dc= do-P =100-12 =88 Mean diameter d =(do+dc)/2 =(100+88)/2 =94 mm
			Tan $\alpha = \frac{Lead}{\pi d} = \frac{2p}{\pi d}$, $\alpha = tan^{-1}\left(\frac{2p}{\pi d}\right)$
			$ \begin{array}{c} \pi d \\ \alpha = tan^{-1}\frac{24}{\pi r^{94}} = 4.64^{\circ} \end{array} $
Q	5b)	8	
			Torque Required to lift the load , T1= W.tan ($\alpha + \emptyset$) $\frac{d}{2}$
			T1= 300 x 10 ³ x tan ($4.64^{\circ} + 8.53^{\circ}$) $\frac{94}{2}$ = 3301.15 x 10 ³ N.mm
			Total Torque =Tt=T1+T2 =3301.15 x $10^3 + 0 = 3301.15 x 10^3$ N.mm
			Efficiency of screw: $n = \frac{tan \propto}{tan (\propto + \emptyset)} = \frac{tan 4.64}{tan (4.64 + 8.53)} = 0.347$ i.e 34.71 %

Examination: 2016 SUMMER

 Que.No
 Marks

 Question:
 Question:

 Why square threads are preferred over V-thread for power transmission ?

 Answer:
 . Square threads are preferred over V-thread for power transmission because of following points. 1) Square thread has the greatest efficiency as its profile angle is zero. 2) It produces minimum bursting pressure on the nut. 3) It has more transmission efficiency due to less friction. 4) It transmits power without any side thrust in either direction. 5) It is more smooth and noiseless operation.

Que.No	Marks	
Que.No	Marks 8	Question: A screw jack is used to lift a load of 50 kN through a maximum lift of 200 mm. The material used for a screw is steel of allowable stresses in tension and compression as 100 N/mm2 and 50 N/mm2 respectively. The pitch of screw is 8 mm. The nut is made of phosphor bronze with allowable bearing pressure between nut and screw is not to exceed 20 N/mm2. If the coefficient of friction between screw and nut is 0.14, design the screw and nut Answer: Given Data: $w = 50 \text{ Kmm}^2$, $m = 40 \text{ Nmm}^2$, $m = 10 Nm$
		Taxazillomahie. So screw is safe. Design of Nut: The bearing pressure between the thread $Pb = \frac{W}{\frac{\pi}{x} (do^2 - dc^2) n}, 20 = \frac{50 \times 10^2}{\frac{\pi}{x} (50^2 - 42^2) n}, \text{ n= 4.32 i.e = 5 threads in contacts}$ Height of Nut: h=n x p = 5x8 =40 mm Check: Shear stress induced in the screw thread $r = \frac{W}{\pi x (dc) x tn}$ as t= p/2 $r = \frac{W}{\pi x (dc) x tn}$ = 18.95 N/mm ² < 40 N/mm ² <u>Taketander</u> (7 allowable. So screw is safe .
Q 5c)(i)	8	Question: Show that the efficiency of self locking screw is less than 50% Answer: Torque required to lower the load $T_1 = P X \frac{d}{2} = W. \tan (\emptyset - \alpha) \frac{d}{2} 1 M$ If however $, \Phi > \alpha$ the torque required to lower the load will be positive, indicating that an effort is applied to lower the load, such a screw is known as self-locking screw. A screw will be self-locking 1) if the friction angle is greater than helix angle or coefficient of friction is greater than tangent of helix angle i.e μ or tan $\Phi > \tan \alpha$ We know that the efficiency of screw,

Therefore, Efficiency for self-locking screws,

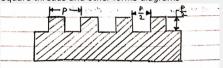
$$\eta \leq \frac{\tan \phi}{\tan (\phi + \phi)} \leq \frac{\tan \phi}{\tan 2\phi} \leq \frac{\tan \phi (1 - \tan^2 \phi)}{2 \tan \phi} \quad \leq \frac{1}{2} - \frac{\tan^2 \phi}{2}$$

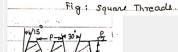
From this expression we see that efficiency of self-locking screws is less than 1/2 or 50%.

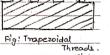
Question: Explain different forms of threads with their relative advantages and applications.

Answer: Square threads

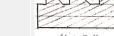
Square threads are the most commonly used thread form for the power screws. Following table gives you various thread forms and comparisons.


Screw Form	Characteristic	Application	
Sq. Thread	No side thrust Higher efficiency	Used for general purpose power transmission	
Trapezoidal Threads	Stronger than square threads Easy to manufacture Wear compensation	Used for higher power transmission	
ACME threads	Stronger than square threads Easy to manufacture Wear compensation	Used for higher power transmission	
Buttress threads	Can bear very heavy load in one direction	Used to handle heavy forces in one direction, like in truck jack	


Sq. threads Advantages and disadvantages *The advantages of sq. threads are as follows:* 1) Efficiency of sq. threads is more than trapezoidal threads


2) There is no side thrust or radial pressure.

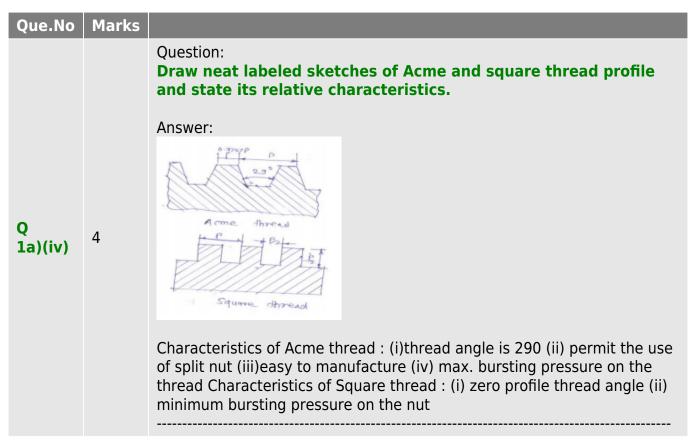
The disadvantages of sq. threads are,
 Sq. threads are difficult to manufacture than trapezoidal threads.
 The wear of sq. threads can not be compensated as it can be done in trapezoidal.
 The thread thickness at core is less than trapezoidal, hence sq. threads have less load carrying capacity.


Square threads and other forms diagrams

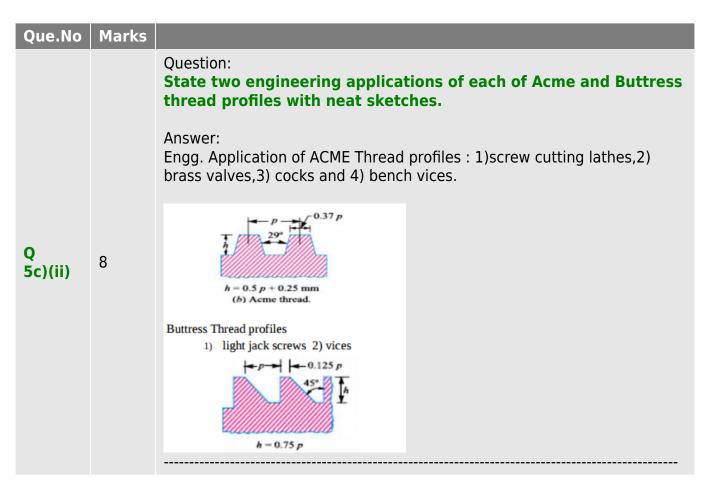
Q6b) 4

45 0.125F

75


Fig : Acme Threads.

Examination: 2016 WINTER


Question:

A power screw on a machine has single start square thread with a non rotating bronze nut. Axial force on the screw is 15 kN. Allowable stresses for screw material in compression and shear are 85 MPa and 37 MPa respectively. Allowable bearing pressure for the screw nut pair is 5 MPa. Find (i) Core diameter of screw (ii) Length of the nut (iii) Efficiency of power screw in coefficient of friction between screw and nut is 0.12. (iv) Shear stresses in the threads of screw and nut.

Answer:

Design of power Screw: Given Data: W =15 KN =15 X 103 N, ocnut =85 N/mm2, t nut =37 N/mm2 $P_b = 5 \text{ N/mm}^{2} \mu = 0.14$ Design of Screw: 1) Core Diameter of screw : Consider the screw under pure compression to find diameter of screw $\sigma c = \frac{W}{\frac{\pi}{2} X(dc)^2}$, $85 = \frac{15 x(10)^3}{\frac{\pi}{2} X(dc)^2} d_c = 14.99$ say 15 mm Do =Dc /0.84 = 15/0.84 = 17.86 Say 18 mm D = (do + dc)/2 = (15 + 18)/2 = 16.5 mmP= do- dc = 18-15 = 3 mm ii)Length of Nut : The bearing pressure between the thread $Pb = \frac{w}{\frac{\pi}{4}\chi(do^2 - dc^2) n} , \ 5 = \frac{15 x(10)^3}{\frac{\pi}{4}\chi(18^2 - 15^2) n}$ Q5a) 8 n= 38.60 i.e = 40 contacts Height of Nut: h=n x p =40 x 3 =120 mm Helix angle $\alpha = tan^{-1} \frac{\text{Lead}}{\pi x 16.5} = 3.31^{\circ}$ $Ø = tan^{-1}\mu = tan^{-1}x 0.12 = 6.84^{\circ}$ Torque required lifting the load $T_1 = W$. tan $(\alpha + \phi) \frac{d}{2}$ $T_1 = 15x \ 10^{3} \tan (3.31 + 6.84) \frac{16.5}{2} = 22159.13$ N.mm As collar friction is Neglecting, T₂=0 Total Torque required to lift the load = T₁= 22159.13 N.mm III) Efficiency of power screw : $\tilde{n} = \frac{W.\tan(\alpha)\frac{d}{2}}{T}$ $=(15x10^{3}tan(3.31)16.5/2)$ = 0.323 = 32 % 22159.13 IV)Shear stresses in threads of screw & nut : Shear stress induced in the screw thread W as t = p/2πX(dc)Xtn

 $\tau = \frac{50 \times 10^3}{\pi X(15)X1.5 \times 40} = 5.30 \text{ N/mm}^2$ Shear stress induced in the Nut thread $\tau = \frac{W}{\pi X(do)Xtn} \text{ as } t = p/2$ $\tau = \frac{50 \times 10^3}{\pi X(18)X1.5 \times 40} = 4.42 \text{ N/mm}^2$

Examination: 2015 WINTER

Que.No	Marks	
Que.No Q 1a)(iv)	Marks 4	Question: State four different thread profiles used in power transmission. Draw neat sketches of any two of them. Answer: Following are the three types of screw threads mostly used for power screws: 1. Square thread. 2. Acme threads 3.trapezoidal thread. 3. Buttress thread $I = \frac{p + p}{29^{\circ}} + \frac{0.37 p}{100}$
		$ \begin{array}{ll} h = 0.5 \ p + 0.25 \ \text{mm} & h = 0.5 \ p \\ (b) \ \text{Acme thread.} & (a) \ \text{Square thread.} \end{array} $

	Maulaa	
Que.No	Marks	
		Question: A vertical double start square threaded screw of 120 mm mean diameter and 24 mm pitch supports a vertical load of 20 kN. The axial thrust in screw is taken by collar bearings of 300 mm outside and 150 mm inside diameter. Find the force required at the end of the lever which is 400 mm long in order to lift and lower the load. The coefficient of friction for screw and nut is 0.18 and for collar bearing it is 0.25.
Q 5 a)	8	Answer: $W = 20 \text{ KN} = 20 \text{ X } 10^3 \text{ N}$ P=24 mm d=120 mm D1=150 mm $R1=75 mmDarder = 0.18, \ \mu c = 0.25Since, Screw is double start, Lead of screw = 2 p =2 x24 =48 mm\text{Tan } \alpha = \frac{4 \text{ seed}}{\pi n} = \frac{2 p}{\pi n}, \alpha = t \alpha n^{-1} \frac{2 p}{\pi d}\alpha = t \alpha n^{-1} \frac{4 m}{n x 120} = 7.25^{\circ}(\phi t \alpha n^{-1} \mu = t \alpha n^{-1} x 0.18 = 10.20^{\circ}Torque Required to lift the loadT1= W.\tan (\alpha + \phi) \frac{d}{2}T1=20 \times 10 3 \tan (7.25 + 10.20) \frac{120}{2} = 377.27 \text{ N.m}Torque required in overcoming frictional resistance = TeAssuming Uniform Wear condition\text{Te} = \mu c. W.RMean radius R = \frac{R1 + R2}{2} = \frac{75 + 150}{2} = 112.5 \text{ mm}Te=0.25 x 20 x 103 x 112.5 = 562.5 N.mTotal Torque = Tt = T1 + Te= 377.27 + 562.5 = 940 N.mForce required the end of lever\text{Tt} = P1 \times 1940 \times 103 = P1 \times 400P1= 2350 mmTorque Required to lower the loadT1 = W.\tan (\phi - \alpha) \frac{d}{2}= 20 \times 103 x \tan (10.203 - 7.25) \times 120/2= 61.90 N.mTotal Torque T_2 + \text{Te} = 61.90 + 562.5 = 624.40 \text{ N.m}Force required at the end of the lever to lower the loadP_2 = Tb'L = 62.440 \times 10^3/400 = 1561 \text{ N}.$

Que.No	Marks	
		Question:
		Explain the terms self locking and overhauling of screw.
		Answer:
		$T = P \times \frac{d}{2} = W \tan (\phi - \alpha) \frac{d}{2}$
		If however, $\phi > \alpha$, the torque required to lower the load will be positive, indicating
		that an effort is applied to lower the load, such a screw is known as self locking screw.
		A screw will be self locking
		1) if the friction angle is greater than helix angle or coefficient of friction is greater
		than tangent of helix angle
		<i>i.e.</i> μ or tan ϕ > tan α .
Q 5c)(ii)	8	2) if the frequency is less than 50 % i.e $\eta < 50\%$ (Correct Ans: 03 M)
		a screw will be self locking if the friction angle is greater than helix angle or coefficient of
		friction is greater than tangent of helix angle μ or $\tan \Phi > \text{or} = \tan \alpha$.
		We know that the efficiency of screw,
		$\eta = \frac{\tan \phi}{\tan (\alpha + \phi)}$
		Therefore, Efficiency for self locking screws,
		$\eta \le \frac{\tan \phi}{\tan (\phi + \phi)} \le \frac{\tan \phi}{\tan 2\phi} \le \frac{\tan \phi (1 - \tan^2 \phi)}{2 \tan \phi} \le \frac{1}{2} - \frac{\tan^2 \phi}{2}$
		$\frac{1}{12} \frac{1}{\tan(\phi + \phi)} = \frac{1}{\tan 2\phi} = \frac{1}{2} \frac{1}{\tan \phi} = \frac{1}{2} \frac$
		From this expression we see that efficiency of self locking screws is less than ½ or 50%. If
		the efficiency is more than 50%, then the screw is said to be overhauling.