Published on *Mechanical Engg Simple Notes*, *Solved problems and Videos* (<u>https://mechdiploma.com</u>)

<u>Home</u> >

Subject Code

- Any - 🔻

Chapter Name

- Any - 🔻

Apply

Examination: 2017 SUMMER

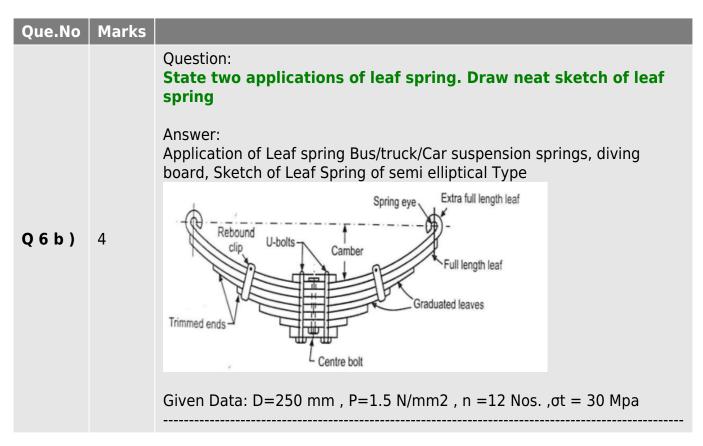
length
condition 3) Spring neter of
an
springs nsile on rrect the
3

Que.No	Marks	
		Question: A helical valve spring is to be designed for an operating load range of approximately 135 N. The deflection of the spring for the load range is 7.5 mm. Assume spring index of 10. Permissible shear stress for the material of the spring = 480 MPa and its modulus of rigidity = 80 KN/mm2. Design the spring. Take Wahle's factor 4 4 4 1 . , C C C 0 615 = + 'C' being the spring index
Q 6 b)	4	Answer: given load W= 135N Deflection 6 =7.5mm Spring index c=10 Permissible shear stress T=480 MPa Modulus of rigidity G =80 KN/mm2 Wahl's factor K =4C-1/4C-4 +0.615/C=4X10-1/4X10-4 +0.615/10=1.14 (1)Mean dia. Of the spring coil (1 mark) Maximum shear stress, T = Kx 8WC/ π d 2 480 = 1.14x 8x135x10/3.142xd2 d = 2.857mm from table we shall take a standard wire of size SWG 3 having diameters (d) =2.946mm mean dia. Of the spring coil D= CXd =10x2.946=29.46 mm outer dia. Of the spring coil Do =D+d=29.46+2.946=32.406mm (2) number of turns of the spring coil (n) (1 mark) Deflection 6 = 8WC3 n/Gd 7.5 =8x135X103x n/ 80000xd n =1.64 say 2 For square and ground end n' =n+2=2+2=4 (3) free length of spring (1 mark) =Lf =n'd+ 6 + 0.15 x 6 =4x2.496+7.5+0.15xx7.5=18.609mm (4) pitch of the coil (1 mark) p= free length/n'-1=18.609/4-1=6.203mm

Examination: 2017 WINTER

Que.No	Marks	
Q4b)	8	Question: A helical competersion imperssion speraing Answer: Design of spring Given Data:LOAD W= 500N , $\delta = 25 \text{ mm}$ C=8 $\tau = 350 \text{ MPa} = 350 \text{ N/m}$ $G = 85 \times 10^3 \text{ N/mm}^3$ $Kw = \frac{4C-1}{4C-4} + \frac{0.615}{c} Kw = \frac{4x8-1}{4x8-4} + \frac{0.615}{8}$ = 1.184 $\tau = Kw \frac{8 W C}{\pi d^2}$ $350 = 1.184 \frac{8 X500X8}{\pi d^2}$ d = 5.87 mm say 6 mm $\delta = \frac{8 W C^2 n}{c d}$ $25 = \frac{8 \times 500 8^3 n}{85 \times 10^3 X6}$ = 6.15 say 7 Number of active turns of spring = 7

Que.No	Marks	
		Question: State any four area of Application of spring:
Q 6c)(i)	4	Answer: 1) To cushion, absorb or control energy to external load : Car springs, Railway buffers 2) To store Energy : Watches Toys 3) To Measure forces : Spring Balances, Gauges ,Engines 4) To provide clamping force in Jigs & fixtures. 5) To apply forces as in brakes, clutches & spring loaded valve.


Examination: 2016 SUMMER

Que.No	Marks	
Q 4a)(iii)	4	Question: State any four applications of spring. Answer: 1) To cushion, absorb or control energy to external load : Car springs, Railway buffers 2) To store Energy : Watches Toys 3) To Measure forces : Spring Balances, Gauges ,Engines 4) To provide clamping force in Jigs
		& fixtures. 5) To apply forces as in brakes, clutches & spring loaded valve.

Que.No	Marks	
		Question: A railway wagon having 1500 kg mass and moving at 1 m/s velocity dashes against a bumper consisting of two helical springs of spring index 6. The springs, which get compressed by 150 mm while resisting a dash made of spring steel having allowable shear stress of 360 N/mm2 and modulus of rigidity 8.4 [] 104 N/mm2 . Design the helical coil spring with circular crosssection of spring wire.
		Answer: Given Data: m=1500 kg , V= 1 M/s , $\delta = 150 mm$, $\tau = 360 \text{ N/m}$, G= 8.4 x 10 ⁴ N/mm ² , C= 6 K.E= $\frac{1}{2} M V^2 = \frac{1}{2} 1500 x 1^2 = 750 \text{ N.m} = 750 \text{ x } 10^3 \text{ N.mm}$
Q 5 b)	8	Energy stored in spring $= \frac{1}{2} W \delta X 2 (2 \text{ Buffer spring})$ $750 \times 10^3 = W \times 150$, $W = 5 \times 10^3 \text{ N}$ Torque transmitted by spring $T=W X Dm/2 = 5 \times 10^3 x (C x d)/2 = 5 \times 10^3 x (6 x d)/2 = 15 \times 10^3 d$ $T=\pi/16 \times \tau x d^3 = (16x15x10^3) / (\pi x 360)$ d= 14.56 mm = 15 mm C= Dm/d = 6= Dm/15, $Dm = 90 mm\delta = \frac{8 W D^3 n}{G d^4} \cdot 150 = \frac{8 \times 5 \times 10^3 \times 90^3 n}{8.4 \times 10^4 \times 15^4} \text{n} = 21.87 \text{i.e} 22 \text{ turns} 1Assuming squared & grounded ends, total number of truns is given byn' = n + 2 = 22 + 2 = 24Solid Length = Ls= n' x d = 24 x 6 = 144 mmFree Length = Fs = n' x d + \delta max + 0.15 \delta maxFs = 22 x 6 + 150 + 0.15 x 150 = 304.5 mmPitch of coil = P = \frac{free \ length}{n'-1} = \frac{304.5}{24-1} = 13.24 \text{ mm}$
Q6)	4	Question: Draw a neat sketch of leaf spring of semi-elliptical type and name its parts. Answer: Sketch of Leaf Spring of semi elliptical TypeDiagram+ Names :

Examination: 2016 WINTER

Que.No	Marks	
Q 4a)(ii)	4	Question: Write the equation with Wahl's factor, used for design of helical coil spring. State the SI unit of each term in the equation Answer: Wahl's Factor Equation:
Q5b)	8	Question: Design a helical compression spring with ground ends. The spring index is 12. Maximum load on the spring is 100N and deflection under maximum load is 15 mm. Allowable shear stress of the material is 100 MPa and modulus of rigidity is 4 MPa. Find wire and spring diameters, number of coils and stiffness of spring. Answer: Design of Helical Compression Spring: Given Data: W=100 N, $\delta = 15$ mm, $\tau = 100$ N/mm ² , G= 84 x 10 ³ N/mm ² (actually in question paper G= 4MPa is given , but it is not a correct value it could be printing mistake) C= 12 C= D _m /d = 12, Ks=1 + $\frac{1}{2C} = 1 + \frac{1}{2X12} = 1.04$ (Neglecting curvature effect) $\tau = K_S \frac{8 WC}{md^2}$, $\frac{100 - 1.04 \cdot 8 \times 100 \times 12}{mXd^2}$ d=5.6 mm Say 6mm ii. Spring diameter : D = CX d = 12 X 6 = 72 iii. No of turns: $\delta = \frac{8 WD^3 n}{Gd^4}$ $15 = \frac{8 \times 100 \times 72^3 n}{84 \times 10^3 \times 6^4}$ n= 5.47 i.e 6 turns Assuming squared & grounded ends ,total number of truns is given by $n^2 = n + 2 = 642 = 8$ iv. Stiffness of spring K= W/ $\delta = 100$ / 15 = 6.66 (Note: spring is designed by considering G= 84 X10 ³ N/mm ² instead of 4 Mpa)

Examination: 2015 WINTER

Q 4a)(ii)	4	 Question: : (1) Spring index (2) Spring stiffness (3) Free length of spring (4) Solid length of spring Answer: Spring Index: It is a ration of mean diameter of coil to the diameter of spring wire. Mathematically C = D/d Spring stiffness: It is load required per unit deflection of the spring. spring Rate = W/δ
		Or Length of spring when spring is fully loaded condition. Ls= n' x d

Que.No	Marks
--------	-------

Question:

A safety valve of 60 mm diameter is to blow off at a pressure of 1.2 N/mm2. It is held on its seat by a close coiled helical spring. The maximum lift of the valve is 10 mm. Design a suitable compression spring of spring index 5 with an initial compression of 35 mm. The shear stress for spring material is limited to 500 MPa. Take G = 80 kN/mm2.

Answer:

Given data , $Dv = 60mm$, $P = 1.2N/mm^2$, $z = 500N/mm^2$ $G = 80 \times 10^3 N/mm^2$, $C = 5$, finitial compression= 25 mm maximum lift of value = 10mm. Solution G Diameters of spring wire (d) calculate load at which value is blow off $W_1 = P \times \Pi_X D_v^2 = 1.2 \times \Pi_X (60)^2$ $W_1 = 3392.92 N$ maximum compression = Initial compt Max.lift of value $\underline{Gmax = 35 + 10 = 45 mm}$ $at initial comp. of spring (35mm) \rightarrow W_1 = 3392.92 N$ $Maximum comp. (45mm) \rightarrow W_2 = 2$ $W_2 = 3292.92 \times 4.5 = 4362.32 N$ $M_2 = 3292.92 \times 4.5 = 4362.32 N$ $M_2 = 3292.92 \times 4.5 = 4362.32 N$ $Maximum comp. (45mm) \rightarrow W_2 = 2$ $W_2 = 3292.92 \times 4.5 = 4362.32 N$ $Maximum comp. (45mm) \rightarrow W_2 = 2$ $M_2 = 3292.92 \times 4.5 = 1.310$ $K = \frac{4C-1}{4C-4} + \frac{O.615}{C} = \frac{(4 \times 5) - 4}{5} = 1.310$ $K = \frac{4C-1}{4C-4} + \frac{O.615}{C} = \frac{(4 \times 5) - 4}{5} = 1.310$ The maximum shear stress is , $T = K \times \frac{8W_2C}{Md^2} , d^2 = K \times \frac{8W_2C}{Md^2}$ $Mumber of surfaces of spring wire = D = C \times d$ $\frac{D = 5 \times 12.06 = 60.3 mm}{Gmex} = \frac{8W_2D^3n}{9} h = \frac{45 \times 80 \times 13 \times (12.06)^4}{8 \times 4362.32 \times (60.3)^3}$ $h = 9.95 \approx 10 tuans$ Assuming Square 4 grounded end, total no of turns
G: 80×10 ³ N/mm ² , C:=5, Initial compression: 35 mm maximum lift of value = 10 mm. Solution Diameter of spring wire(d) ealculate load at which value is blow off Wi = P×II × Dv ² = 1.2×II × (60)2 Wi = 3392.92 N maximum compression = Initial compt Max.lift of value dmax = 35+10 = 45 mm at initial comp. of spring (35 mm) → W, =3392.92 N Maximum comp. (45 mm) → W ₂ = ? W ₂ = $\frac{3392.92 \times 45}{35}$ = 4362.32 N Maximum comp. (45 mm) → W ₂ = ? W ₂ = $\frac{3592.92 \times 45}{35}$ = 4362.32 N Nahl's stress concentration factors is, K = $\frac{4c-4}{4c-4}$ + $\frac{0.615}{c}$ = $\frac{(4xt)-1}{(4xt)-4}$ + $\frac{0.615}{5}$ = $\frac{1.310}{1-310}$ The maximum shear stress is, K = $\frac{4c-4}{4c-4}$ + $\frac{0.615}{c}$ = $\frac{(4xt)-4}{113}$ r The maximum shear stress is, K = $\frac{12.06}{12.06}$ mm Mize = $\frac{3W_2D^2n}{60.3}$ mm Mumber of turns (n) dmax = $\frac{8W_2D^2n}{4xd^4}$ § h = $\frac{45x80\times10^3x(12.06)^4}{8x43(2.32x(60.3)^3}$ (h = 9.95 × 10 turns)
maximum lift of valve = 10 mm. Solution Diameter of spring wire(d) Calculate load at which valve is blow off $W_1 = P \times \Pi_X D_V^2 = 1.2 \times \Pi_X (60)2$ $W_1 = 3392.92 N$ Maximum compression = Initial compt Max.lift of valve $\frac{d_{max} = 35+10 = 45 mm}{d_{max} = 35+10 = 45 mm}$ at initial comp. of spring(35mm) $\rightarrow W_1 = 3392.92 N$ Maximum comp. (45mm) $\rightarrow W_2 = 8$ $W_2 = \frac{3392.92 \times 45}{35} = 4362.32 N$ Wahl's stress concentration factors is, $K = \frac{4c-4}{4c-4} + \frac{0.615}{c} = \frac{(4 \times 5)-4}{5} = \frac{1.310}{5}$ The maximum shear stress is, $X = \frac{4c-4}{4c-4} + \frac{0.615}{c} = \frac{(4 \times 5)-4}{713} + \frac{0.615}{5} = \frac{1.310}{713}$ Then, $\frac{G=12.06 mm}{Ma2}$, $\frac{M^2 \times X8W_2C}{T13}$ Mumber of turns (n) $\frac{D=5x12.06 = 60.3 mm}{6x47}$ $\frac{M_2 = \frac{8W_2D^2n}{7x4}}{8} = \frac{45 \times 80 \times 10^3 \times (12.06)^4}{8 \times 43(2.32 \times (60.3)^3}$ $N = 9.95 \approx 10 turns$
Solution Diameters of spring wire (d) realculate load at which value is blow off $W_1 = P \times \Pi_4 \times D_v^2 = 1.2 \times \Pi_4 \times (60)^2$ $W_1 = 3392.92 N$ maximum compression = Initial compt Max.lift of value $\underline{dmax = 35+10 = 45 \text{ mm}}$ at initial comp. of spring (35mm) $\rightarrow W_1 = 3392.92 N$ Maximum comp. (45mm) $\rightarrow W_1 = 3392.92 N$ $M_2 = \frac{3392.92 \times 45}{35} = 4362.32 N$ $Wah's stress concentration factors is, K = \frac{4c-4}{4c-4} + \frac{0.615}{c} = \frac{(4\times 5)-4}{5} = \frac{1.310}{5}The maximum shear stress is,X = \frac{8W_2C}{\pi d^2} , d^2 = \frac{K \times 8W_2C}{\pi d^2}M_2 = \frac{32.92.92 \times 45}{\pi d^2} = \frac{1.310}{\pi d^2}Then, \frac{d = 12.06 \text{ mm}}{d = 12.06 \text{ mm}}M_1 = 5 \times 12.06 = 60.3 \text{ mm}\int hen, \frac{D = 5 \times 12.06}{4 \times d^4} = \frac{45 \times 80 \times 16 \times (12.06)^4}{8 \times 4362.32 \times (60.2)^3}$
• calculate load at which value is blow off $W_1 = P \times \Pi_+ \times D_v^2 = 1.2 \times \Pi_+ \times (60)^2$ $W_{-} = 3392.92 N$ • maximum compression = Initial compt Max. lift of value $\underline{dmax} = 35+10 = 45 \text{ mm}$ at initial comp. of spring (35mm) $\rightarrow W_1 = 3392.92 N$ Maximum comp. (45mm) $\rightarrow W_2 = 9$ $W_2 = \frac{3392.92 \times 4.5}{35} = 4.362.32 N$ • Wahl's stress concentration fattor is, $K = \frac{4c-4}{4c-4} + \frac{0.615}{2} = \frac{(4 \times 3)-1}{4c-4} + \frac{0.615}{5} = 1.310$ • The maximum shear stress is, $Z = K \times \frac{8W_2C}{\pi d^2}$, $d^2 = \frac{K \times 8W_2C}{\pi d^2}$ • Then, $\frac{ d = 12.06 \text{ mm}}{ d = 12.06 \text{ mm}}$ • Mumber of spring wire = D = Cxd $\frac{D}{2} = 5 \times 12.06 = 60.3 \text{ mm}}{dmax} = \frac{8W_2D^3n}{4xd^4} - \frac{8}{8} h = \frac{45 \times 80 \times 13^3 \times (12.06)^4}{8 \times 4362.32 \times (60.3)^3}$
$W_{1} = P \times \prod_{n} \times D_{v}^{2} = 1.2 \times \prod_{n} (60)^{2}$ $W_{n} = 3392.92 N$ $(M_{n} = 3392.92 N)$ $(M_{n} = 3392.92 N)$ $(M_{n} = 3392.92 N)$ $(M_{n} = 35+10 = 45 mm)$ $(M_{n} = 35+10 = 45 mm)$ $(M_{n} = 3392.92 N)$ $(M_{n} = 392.92 N)$ $(M_{n} = 392.92 N)$ $(M_{n} = 392.92 N)$ $(M_{n} = 38N_{2}0)$ $(M_{n} = 38N_{2}0)$ $(M_{n} = 38N_{2}0)$ $(M_{n} = 3N_{2}0)$ $($
$W_{-} = 3392 \cdot 92 N$ $(maximum compression = 1 nitial comp+ Max.lift of value)$ $\frac{d_{max} = 35 + 10 = 45 mm}{d_{max} = 35 + 10 = 45 mm}$ $at initial comp. of spring (35mm) \rightarrow W_{-} = 3392 \cdot 92 N$ $Maximum comp. (45mm) \rightarrow W_{-} = 8$ $W_{2} = \frac{3292 \cdot 92 \times 45}{35} = 4362 \cdot 32 N$ $W_{2} = \frac{3292 \cdot 92 \times 45}{35} = 4362 \cdot 32 N$ $W_{2} = \frac{3292 \cdot 92 \times 45}{35} = 4362 \cdot 32 N$ $W_{2} = \frac{3292 \cdot 92 \times 45}{35} = 4362 \cdot 32 N$ $W_{2} = \frac{3292 \cdot 92 \times 45}{35} = 4362 \cdot 32 N$ $W_{2} = \frac{3292 \cdot 92 \times 45}{35} = 4362 \cdot 32 N$ $W_{2} = \frac{3292 \cdot 92 \times 45}{35} = 4362 \cdot 32 N$ $W_{2} = \frac{4c - 4}{35} + \frac{0.615}{615} = \frac{1.310}{1.310}$ $K = \frac{4c - 4}{4c - 4} + \frac{c}{c} + \frac{(4 \times 5)^{-4}}{(4 \times 5)^{-4}} + \frac{5}{5} = \frac{1.310}{1.310}$ $The maximum shear stress is,$ $T = K \times \frac{8W_{2}C}{TId^{2}}, d^{2} = \frac{K \times 8W_{2}C}{TI3}$ $\frac{d}{TId^{2}} = 12 \cdot 06 mm$ $fhen,$ $\frac{d}{T} = 12 \cdot 06 mm$ $fhen,$ $\frac{d}{T} = 12 \cdot 06 = 60 \cdot 3 mm$ $\frac{d}{T} = 5 \times 12 \cdot 06 = 60 \cdot 3 mm$ $\frac{d}{T} = \frac{8W_{2}D^{3}h}{4} + \frac{8}{5}h = \frac{45 \times 80 \times 13^{3} \times (12.06)^{4}}{8 \times 4362 \cdot 32 \times (60 \cdot 3)^{3}}$ $\frac{h = 9 \cdot 95 \times 10 tu 3ns}{h = 9 \cdot 95 \times 10 tu 3ns}$
• Maximum compression = Initial compt Max. 1ift of value $\frac{d_{max} = 35 + 10 = 45 \text{ mm}}{dt \text{ initial comp. of spring (35mm)} \rightarrow W_1 = 3392.92 \text{ N}}$ $Maximum comp. (45mm) \rightarrow W_2 = 8$ $W_2 = \frac{3392.92 \times 45}{35} = 4362.32 \text{ N}}{35}$ • Wahl's stress contentration factors is, $K = \frac{4c-1}{4c-4} + \frac{0.615}{c} = \frac{(4\times 3)-1}{c} + \frac{0.615}{5} = 1.310$ • The maximum shear stress is, $T = K \times \frac{8W_2C}{TTd^2}, d^2 = K \times \frac{8W_2C}{TT3}$ • Then, $\frac{d = 12.06 \text{ mm}}{12.06 \text{ mm}}$ • Then, $\frac{D = 5 \times 12.06 = 60.3 \text{ mm}}{dmax} = \frac{8W_2D^3h}{5} + 1 = \frac{45 \times 80 \times 10^3 \times (12.06)^4}{8 \times 4362.32 \times (60.3)^3}$ • D = 9.95 $\approx 10 \text{ turns}$
$\frac{d_{max} = 35 + 10 = 45 \text{ mm}}{d_{max} = 35 + 10 = 45 \text{ mm}}$ at initial comp. of spring (35mm) $\rightarrow W_1 = 3392.92 \text{ N}$ Maximum comp. (45mm) $\rightarrow W_2 = 8$ $W_2 = \frac{3392.92 \times 45}{35} = 4362.32 \text{ N}$ Wahl's stress concentration factor is, $K = \frac{4(-4)}{4c-4} + \frac{0.615}{c} = \frac{(4\times 3)-4}{5} = \frac{1.310}{5}$ The maximum shear stress is, $3 = K \times \frac{8W_2C}{Md^2}$, $d^2 = \frac{K \times 8W_2C}{Md^2}$ Then, $\frac{d = 12.06 \text{ mm}}{d}$ Then, $\frac{D = 5\times 12.06 = 60.3 \text{ mm}}{d}$ Mumber of turns (n) $d_{max} = \frac{8W_2D^3n}{4xd^4}$ $g = h = \frac{45\times 80\times 13^3 \times (12.06)^4}{8\times 4362.32\times (60.3)^3}$ $h = 9.95 \approx 10 \text{ turns}$
at initial comp. of spring (35mm) $\rightarrow W_1 = 3392.92 N$ Maximum comp. (45mm) $\rightarrow W_2 = 8$ $W_2 = \frac{3392.92 \times 45}{35} = 4362.32 N$ Wahl's stress concentration factor is, $K = \frac{4c-4}{4c-4} + \frac{0.615}{c} = \frac{(4\times 3)-4}{5} + \frac{0.615}{5} = \frac{1.310}{1-310}$ The maximum shear stress is, $3 = K \times \frac{8W_2C}{Md^2}$, $d^2 = \frac{K \times 8W_2C}{Md^2}$ Then, $d = 12.06 \text{ mm}$ Then, $d = 12.06 \text{ mm}$ Mumber of turns (n) $d_{mex} = \frac{8W_2D^3n}{4xd^4}$ $g h = \frac{45\times80\times13^3\times(12.06)^4}{8\times4362\cdot32\times(60\cdot3)^3}$ $h = 9.95 \approx 10 \text{ turns}$
Maximum comp. (45mm) $\rightarrow W_{2} = 9$ $W_{2} = \frac{3392 \cdot 92 \times 45}{35} = 4362 \cdot 32N$ $Wahl's stress concentration factor is, K = \frac{4c-4}{4c-4} + \frac{0.615}{c} = \frac{(4\times t)-1}{(4\times s)-4} + \frac{0.615}{5} = \frac{1\cdot310}{1-310} The maximum shear stress is, T = K \times \frac{8W_{2}C}{11d^{2}}, d^{2} = \frac{K \times 8W_{2}C}{113} Then, \qquad d = 12 \cdot 06 \text{ mm} Then, \qquad d = 12 \cdot 06 \text{ mm} Then, \qquad d = 12 \cdot 06 \text{ mm} Mumber of spring wire = D = C \times d \frac{D = 5 \times 12 \cdot 06 = 60 \cdot 3 \text{ mm}}{6 \times 4^{4}} = h = \frac{45 \times 80 \times 10^{3} \times (12 \cdot 06)^{4}}{8 \times 4362 \cdot 32 \times (60 \cdot 3)^{3}} h = 9 \cdot 95 \approx 10 \text{ turns}$
$W_{2} = \frac{3392 \cdot 92 \times 4.5}{35} = 4362 \cdot 32N$ $Wahl's stress concentration factor is, K = \frac{4c-4}{4c-4} + \frac{0.615}{c} = \frac{(4\times t)-1}{(4\times 5)-4} + \frac{0.615}{5} = \frac{1.310}{1-310} The maximum shear stress is, 3 = K \times \frac{8W_{2}C}{11d^{2}}, d^{2} = \frac{K \times 8W_{2}C}{113} Then, \qquad d = 12.06 \text{ mm} Then, \qquad d = 12.06 \text{ mm} Then, \qquad d = 5\times12.06 = 60.3 \text{ mm} Mumber of turns (n) d_{mex} = \frac{8W_{2}D^{3}n}{9xd^{4}} + \frac{9}{8} + \frac{45\times80\times13}{8\times4362\cdot32\times(60\cdot3)^{3}} h = 9.95 \approx 10 \text{ turns}$
• Wahl's stress concentration factor is, $k = \frac{4c-1}{4c-4} + \frac{0.615}{c} = \frac{(4\times t)-1}{(4\times 5)-4} + \frac{0.615}{5} = \frac{1.310}{1-310}$ • The maximum shear stress is, $7 = K \times \frac{8W_2C}{Md^2}, d^2 = \frac{K \times 8W_2C}{M3}$ • Then, $\frac{d = 12.06 \text{ mm}}{1-3}$ • Then, $\frac{D = 5 \times 12.06 = 60.3 \text{ mm}}{1-5 \times 10.5 \text{ c}}$ • Number of turns (n) $d_{mex} = \frac{8W_2D^3n}{4\times d^4} g h = \frac{45 \times 80 \times 10^3 \times (12.06)^4}{8 \times 4362.32 \times (60.3)^3}$ $h = 9.95 \approx 10 \text{ turns}$
$k = \frac{4c-1}{4c-4} + \frac{0.615}{c} = \frac{(4\times 5)-1}{(4\times 5)-4} + \frac{0.615}{5} = \frac{1.310}{5}$ • The maximum shear stress is, $3 = k\times \frac{8W_{2}C}{\pi d^{2}}, d^{2} = \frac{k\times 8W_{2}C}{\pi 3}$ • Then, d = 12.06 mm • Then, $\frac{d = 12.06 \text{ mm}}{D = 5\times 12.06 = 60.3 \text{ mm}}$ • Number of turns (n) $d_{mex} = \frac{8W_{2}D^{3}n}{6xd^{4}} + \frac{8}{5}h = \frac{4.5\times 80\times 10^{3}\times (12.06)^{4}}{8\times 4362\cdot 32\times (60.3)^{3}}$ $h = 9.95 \approx 10 \text{ turns}$
$k = \frac{4c-1}{4c-4} + \frac{0.615}{c} = \frac{(4\times5)-1}{(4\times5)-4} + \frac{0.615}{5} = \frac{1.310}{5}$ • The maximum shear stress is, $3 = k\times \frac{8W_{2}C}{\pi d^{2}}, d^{2} = \frac{k\times8W_{2}C}{\pi 3}$ • Then, d = 12.06 mm • Then, $\frac{d = 12.06 \text{ mm}}{D = 5\times12.06 = 60.3 \text{ mm}}$ • Number of turns (n) $d_{mex} = \frac{8W_{2}D^{3}n}{6xd^{4}} + \frac{8}{9}h = \frac{4.5\times80\times13}{8\times4362\cdot32\times(60.3)^{3}}$ $h = 9.95 \approx 10 \text{ turns}$
• The maximum shear stress is, $7 = k \times \frac{8W_{2}C}{\pi d^{2}}, d^{2} = \frac{k \times 8W_{2}C}{\pi 3}$ • Then, d = 12.06 mm • Then, $D = 5 \times 12.06 = 60.3 \text{ mm}$ • Number of turns (n) $dmex = \frac{8W_{2}D^{3}h}{4xd^{4}} + h = \frac{45 \times 80 \times 10^{3} \times (12.06)^{4}}{8x4362.32 \times (60.3)^{3}}$ $h = 9.95 \approx 10 \text{ turns}$
Then, Then, mean diameter of spring wire = $D = Cxd$ D = 5x12.06 = 60.3 mm Mumber of turns (n) $d_{mex} = \frac{8W_2D^3h}{4xd^4}$ & $h = \frac{45x80x13x(12.06)^4}{8x4362.32x(60.3)^3}$ $h = 9.95 \approx 10$ turns
Then, Then, mean diameter of spring wire = $D = Cxd$ D = 5x12.06 = 60.3 mm Mumber of turns (n) $d_{mex} = \frac{8W_2D^3h}{4xd^4}$ & $h = \frac{45x80x13x(12.06)^4}{8x4362.32x(60.3)^3}$ $h = 9.95 \approx 10$ turns
$ \frac{D = 5 \times 12 \cdot 06 = 60 \cdot 3 \text{ mm}}{D = 5 \times 12 \cdot 06 = 60 \cdot 3 \text{ mm}} $ $ \frac{D = 5 \times 12 \cdot 06 = 60 \cdot 3 \text{ mm}}{6 \text{ mex} = \frac{8 W_2 D^3 h}{9 \times 4^3} \text{ f} h = \frac{45 \times 80 \times 10^3 \times (12 \cdot 06)^4}{8 \times 4362 \cdot 32 \times (60 \cdot 3)^3} $ $ h = 9 \cdot 95 \approx 10 \text{ turns} $
$ \begin{array}{c} \underline{D=5\times12\cdot06=60\cdot3mm} \\ \hline \underline{D=5\times12\cdot06=60\cdot3mm} \\ \hline \underline{O} \\ \hline \underline{Number of turns(n)} \\ \hline dmex = \frac{8W_2D^3h}{4xd^4} & h = \frac{45\times80\times13\times(12\cdot06)^4}{8\times4362\cdot32\times(60\cdot3)\cdot3} \\ \hline \underline{D=9\cdot95\simeq10\ turns} \\ \hline \end{array} $
$ \frac{N \text{ umber of } \text{ turns } (n)}{d \text{ mox} = \frac{8W_2 D^3 n}{4xd^4} \text{g} n = \frac{45x80x1 d^3x(12.06)^4}{8x4362\cdot32x(60.3)^3} } \\ h = 9\cdot95 \approx 10 \text{ turns} $
$d_{mex} = \frac{8W_2 D^3 h}{4xd^4} + h = \frac{45x80x13x(12.06)^4}{8x4362.32x(60.3)^3}$ $h = 9.95 \approx 10 \text{ Eugns}$
h= 9.95 = 10 Eusns
n'= n+2 = 10+2 = 12 turns
3 Solid Length (Le)
$L_{s} = n' \times d = 12 \times 12.06 = 144.72 mm$
(Free Length (Lf)
Lf = n'xd + comen + 0.15 dmax
$= (12 \times 12.06) + 45 + (-45 \times 0.15)$
Lf = 196.47 mm
O pitch of coil(p)
$P = \frac{Free \ Length}{n'-1} = \frac{196 \cdot 47}{12 - 1} = 17.86 \text{ mm}$
n'-1 12-1
P= 17.86 mm

Q5b) 8

Que.No	Marks	
Que.No Q 6 b)	Marks 8	Question: A semi-elliptical carriage spring of 1200 mm length withstands a load of 60 kN with maximum deflection of 90 mm. Assume breadth to thickness ratio as 8. Design the spring if bending stress of spring material is 540 MPa and E = 2 × 105 N/mm2. Answer: Given data: Central load on each spring = 2W =60KN W = 30 KN =30X10 ³ N, 2L = 1200, L = 600 mm, δ = 90 mm ob =540Mpa, E = 2 x 10 ⁵ N/mm ² Here, b/t = 8 , thus b = 8t The stress in leaf spring is given by ob = $\frac{6 W L}{n b t^2}$ n x b x t ² = $\frac{6 W L}{ob}$ = $\frac{6 X 30 X 10^8 X 600}{540}$ = 200 X 10 ³ 11 Marks
		$\delta = \frac{6 W L^3}{nE b t^3}$ $n x b x t^3 = \frac{(6 W L^5)}{8 x E}$ $n x b x t^3 = \frac{6 X 30 x 10^5 x 600^3}{90 x 2 x 10^5} = 2.16 X 10^3 \dots$ Dividing equation II by equation I, we get $t = 10.8 mm$ $b = 8t = 8 x 10.8 = 86.4 mm$ from equation I, $n x b x t^2 = 200 X 10^3$ $n x 86.4 x 10.8^2 = 200 X 10^3$ $n = 19.84 \cong 20$ Total Number of leaves n = 20 Numbers