You are here

Theory

Explain construction and working of single stage reciprocating air compressor

In single stage reciprocating air compressor, the entire compression is carried out in a single cylinder. The opening & closing of a simple check valve (plate or spring valve) depends upon the difference in pressure, if mechanically operated valves are used for suction & discharge then their functioning is controlled by cams. The weight of air in the cylinder will be zero when the piston is at top dead centre. At this position, you have to neglect clearance volume.

Explain with neat sketch working principle of Lobe compressor

Rotary Lobe type Air Compressor has two mating lobe-type rotors mounted in a case. The lobes are gear driven at close clearance, but without metal-to-metal contact. The suction to the unit is located where the cavity made by the lobes is largest. As the lobes rotate, the cavity size is reduced, causing compression of the vapor(air) within. The compression continues until the discharge port is reached, at which point the vapor exits the compressor at a higher pressure.

 

Give the classification of air-compressors

Classification of Air compressors: 1. According to principle: a. Reciprocating air compressors b. Rotary air compressors

2. According to the capacity a. Low capacity air compressors b. Medium capacity air compressors c. High capacity air compressors

3. According to pressure limits a. Low pressure air compressors b. Medium pressure air compressors c. High pressure air compressors

4. According to method of connection a. Direct drive air compressors b. Belt drive air compressors c. Chain drive air compressors

 

Define :

i) Brake thermal efficiency – It is defined as the ratio of heat equivalent to brake power per unit time to the heat supplied to the engine per unit time Brake thermal efficiency = B.P./ mf x C.V. 

ii) BSFC – It is the mass of fuel required to develop 1 kW brake power for a period of one hour. It is inversely proportional to the brake thermal efficiency. BSFC = Mass of fuel consumed in kg/hr / Brake power in kW

State the applications of gas turbine (any four).

Following are the applications of gas turbine

1. It is used for electric power generation.

2. It is used for locomotive propulsion.

3. It is used for ship propulsion.

4. Gas turbine is used in aircrafts.

5. It is used for supercharging for heavy duty Diesel engines.

6. Used in turbo jet and turbo-propeller engine.

7. It is used for various industrial purpose such as in steel industry, oil and other chemical industry.

Enlist different uses of compressed air.

Following are the applications of compressed air

1) To drive air motors in coal mines.

2) To inject fuel in air injection diesel engines.

3) To operate pneumatic drills, hammers, hoists, sand blasters.

4) For cleaning purposes.

5) To cool large buildings.

6) In the processing of food and farm maintenance.

7) For spray painting in paint industry.

8) In automobile & railway braking systems.

9) To operate air tools like air guns.

10) To hold & index cutting tools on machines like milling

Pages

Subscribe to RSS - Theory